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Today
• Distributed & Concurrent Systems: high level 

overview and key concepts 

• Relevant links: 
• Syllabus: http://www.jonbell.net/gmu-cs-475-

spring-2018/

2

http://www.jonbell.net/gmu-cs-475-spring-2018/
http://www.jonbell.net/gmu-cs-475-spring-2018/
http://www.jonbell.net/gmu-cs-475-spring-2018/


J. Bell GMU CS 475 Spring 2018

Course Topics
• This course will teach you how and why to build 

distributed systems 
• Distributed System is “a collection of independent 

computers that appears to its users as a single 
coherent system” 

• This course will give you theoretical knowledge of 
the tradeoffs that you’ll face when building 
distributed systems
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Course Topics

4

How do I run multiple things 
at once on my computer?

How do I run a big task 
across many computers?

Concurrency, first half of course

Distributed Systems, second half 
of course
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Layers
• From hardware 
• To OS 
• To programming languages 
• To networks 
• To libraries and middleware 
• To developers
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Grading
• 50% Homework 

• 5 assignments, ~2 weeks to do each, all done 
individually 

• Your code will be autograded; you can resubmit an 
unlimited number of times until the deadline and 
view your score 

• Also graded by hand for some non-functional issues 
• 10% Quizes 

• Pass/fail (Pass if you are in class and submit a quiz, 
fail if you don’t) 

• Use laptop or phone to complete the quiz in class 
• 15% Midterm Exam, 20% Final Exam
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Policies
• My promises to you: 
• Quiz results will be available instananeously in 

class; we will discuss quiz in real time 
• Homework will be graded within 3 days of 

submission 
• Exams will be graded within a week
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Policies
• Lateness on homework: 

• 10% penalty if submitted UP TO 24 hours after 
deadline 

• No assignments will be accepted more than 24 
hours late 

• Out of fairness: no exceptions
• Attendance & Quizzes:

• You can miss up to 3 with no penalty 
• Again, out of fairness: no exceptions beyond this
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Honor Code
• Refresh yourself of the department honor code 
• Homeworks are 100% individual 

• Discussing assignments at high level: ok, 
sharing code: not ok 

• If in doubt, ask the instructor 
• If you copy code, we WILL notice (see some of 

my recent research results in “code relatives”) 
• Quizes must be completed by you, and while in 

class
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Course Staff
• Prof Jonathan Bell (me) 

• Office hour: ENGR 4422 Mon & Weds 2:15-3:00 
pm or by appointment 

• Areas of research: Software Engineering, 
Program Analysis, Software Systems

10

Two hobbies: cycling, ice cream
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Course Staff
• GTA: Arda Gumusalan 

• Office Hours: TBA 
• UTA: Thanh Luu 

• Office Hours: TBA 
• Please, no emails to instructor or TAs about the 

class: use Piazza
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Readings
• Bad news: no single book 
• Good news: several free e-books are great references 

• Operating Systems: Three Easy Pieces (Arpaci-Dusseau 
and Arpaci-Dusseau) http://pages.cs.wisc.edu/~remzi/
OSTEP/ 

• Distributed Systems 3rd Edition (van Steen and 
Tanenbaum) https://www.distributed-systems.net/
index.php/books/distributed-systems-3rd-edition-2017/  

• Principles of Computer Systems Design Part II (Saltzer 
and Kaashoek) https://ocw.mit.edu/resources/res-6-004-
principles-of-computer-system-design-an-introduction-
spring-2009/online-textbook/ 
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Concurrency
• Goal: do multiple things, at once, coordinated, on 

one computer 
• Update UI 
• Fetch data 
• Respond to network requests 
• Improve responsiveness, scalability 

• Recurring problems: 
• Coordination: what is shared, when, and how?
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Abstractions
• Goal: take something complicated, make it “easy” 
• Operating Systems 

• From CPUs and memory to processes and 
threads 

• Distributed Systems 
• From collections of computers to coherent 

applications

14



J. Bell GMU CS 475 Spring 2018

Concurrency & Parallelism 

15

T1 T2 T3 T44 different things:

T1 T2 T3 T4 T1 T1 T3 T4 T2 T1 T3Concurrency: 
(1 processor)

Time

T1 T3 T4 T2 T1 T3
Parallelism: 

(2 processors)
Time

T1 T2 T3 T4 T1 T1
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Processes
• Def: A process is an instance of a running program 
• Process provides each program with two key abstractions 

• Logical control flow 
• Each program seems to have exclusive use of the 

CPU. 
• Private address space 

• Each program seems to have exclusive use of main 
memory. 

• How are these illusions maintained? 
• Process executions interleaved (multitasking) 
• Address spaces managed by virtual memory system
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Processes

17

code heap 
data files

stack

public class Sample 
{ 
    static int i; 
    public static void main(String[] args) 
    { 
        int k = 10; 
        foo(k); 
    } 
    public static void foo(int in) 
    { 
        bar(in); 
    } 
    public static void bar(int in) 
    { 
        i = in; 
        System.out.println("bar"); 
    } 
}

Sample.main 
args, k

Sample.foo 
in

Sample.bar 
in, i

System.out.println 
this, “bar”

static int i;

Active Stack 
Frame
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Threads
• Traditional processes created and managed by the 

OS kernel  
• Process creation expensive - fork system call in 

UNIX 
• Context switching expensive 
• Cooperating processes - no need for memory 

protection (separate address spaces)
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Coordination Problems
• Two threads call increment() at the same time 
• What is the value of i afterwards?

19

static int i = 0; 
public static void increment() 
{ 
    i = i + 1; 
}

Spoiler alert: not guaranteed to be 2
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Processes vs Threads

20

code heap 
data files

stack

code heap 
data files

stack stackstack

Single-Threaded Process Multi-Threaded Process



Joel Spolsky

“All non-trivial abstractions, to 
some degree, are leaky.”

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
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Leaky Abstractions
• Completely hiding the underlying complexity is 

never possible, usually not desirable 
• Example: our first two abstractions (concurrency) - 

process and thread

22

Hardware View
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Processes vs Threads
• Context Switching 

• Processor context: The minimal collection of 
values stored in the registers of a processor 
used for the execution of a series of instructions 
(e.g., stack pointer, addressing registers, 
program counter).  

• When switching processes, all of that data 
needs to get flushed out (by the OS) 

• Threads share the same address space: no need 
to do this switch
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Processes vs Threads
• Although more expensive to switch, OS provides 

isolation between processes

24

code heap 
data files

stack

Process 1

code heap 
data files

stack

Process 2

Only can communicate via 
specifically exposed memory 

(private by default)
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Processes vs Threads
• Although more expensive to switch, processes OS 

provides isolation between processes
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code heap 
data files

stack stackstack

Multi-Threaded Process

All heap data is shared 
between threads
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Processes vs Threads
• Example: browsers launching tabs in their own 

process
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More Abstractions
• Process + Thread -> one computer 
• How can we abstract many computers working 

together? 
• What does that even look like?
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Distributed Systems

28

Model: 
Many servers talking through cloud
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Distributed Systems
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Model: 
Servers and Clients talking through cloud
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Distributed Systems
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Model: 
Many clients talking through cloud
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Distributed Systems
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Model: 
Two clients talking through cloud
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Why expand to distributed systems?

• Scalability 
• Performance 
• Latency 
• Availability 
• Fault Tolerance

32

“Distributed Systems for Fun and Profit”, Takada
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Distributed Systems Goals
• Scalability
• Performance 
• Latency 
• Availability 
• Fault Tolerance

“the ability of a system, network, or 
process, to handle a growing 

amount of work in a capable manner 
or its ability to be enlarged to 
accommodate that growth.”

33

“Distributed Systems for Fun and Profit”, Takada
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Distributed Systems Goals
• Scalability 
• Performance
• Latency 
• Availability 
• Fault Tolerance

34

“is characterized by the amount of 
useful work accomplished by a 

computer system compared to the 
time and resources used.”
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Distributed Systems Goals
• Scalability 
• Performance 
• Latency
• Availability 
• Fault Tolerance

35

“The state of being latent; delay, a 
period between the initiation of 
something and the it becoming 

visible.”
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Distributed Systems Goals
• Scalability 
• Performance 
• Latency 
• Availability
• Fault Tolerance

36

“the proportion of time a system is in 
a functioning condition. If a user 

cannot access the system, it is said 
to be unavailable.”

Availability = uptime / (uptime + downtime).

Availability % Downtime/year
90% >1 month
99% < 4 days

99.9% < 9 hours
99.99% <1 hour
99.999% 5 minutes

99.9999% 31 seconds

Often measured in “nines”
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Distributed Systems Goals
• Scalability 
• Performance 
• Latency 
• Availability 
• Fault Tolerance

37

“ability of a system to behave in a 
well-defined manner once faults 

occur”

What kind of faults?

Disks fail
Power supplies fail

Power goes out

Networking fails
Security breached

Datacenter goes offline
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More machines, more problems

• Say there’s a 1% chance of having some hardware 
failure occur to a machine (power supply burns 
out, hard disk crashes, etc) 

• Now I have 10 machines 
• Probability(at least one fails) = 1 - Probability(no 

machine fails) = 1-(1-.01)10 = 10% 
• 100 machines -> 63% 
• 200 machines -> 87% 
• So obviously just adding more machines doesn’t 

solve fault tolerance
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More machines, more problems

• PLUS, the network may be: 
• Unreliable 
• Insecure 
• Slow 
• Expensive 
• Limited

39
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Constraints
• Number of nodes 
• Distance between nodes

40
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Constraints
• Number of nodes 
• Distance between nodes

41
DC

NY

LONDON

SFEven if cross-city links are fast and cheap (are they?) 
Still that pesky speed of light…
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Recurring Solution #1: Partitioning

42

A B

All accesses go to single server
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Recurring Solution #1: Partitioning

• Divide data up in some (hopefully logical) way 
• Makes it easier to process data concurrently 

(cheaper reads) 

43

A 
[0…
100]

B [A…
N]

A 
[101.. 
200]

B 
[O…

Z]

Each server has 50% of data, limits 
amount of processing per server. 

Even if 1 server goes down, still 
have 50% of the data online.
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Recurring Solution #2: Replication

44

A B

All accesses go to single server
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Recurring Solution #2: Replication

45

A B

Entire data set is copied

A B
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Recurring Solution #2: Replication

• Improves performance: 
• Client load can be evenly shared between 

servers 
• Reduces latency: can place copies of data 

nearer to clients 
• Improves availability: 

• One replica fails, still can serve all requests from 
other replicas

46
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Partitioning + Replication

47

A B
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Partitioning + Replication
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Partitioning + Replication
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Recurring Problem: Replication

• Replication solves some problems, but creates a 
huge new one: consistency

50

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

OK, we obviously need to actually do something here to 
replicate the data… but what?
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How much to hide?
• Completely hiding how distributed a system is may 

be too much: 
• Communication latencies can't be hidden (pesky 

speed of light!) 
• Completely hiding failures is impossible (we will 

prove this later in the semester) 
• Can never distinguish a slow computer from 

one that is crashed 
• Hiding more adds performance costs
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Exit-ticket activity

52

Go to socrative.com and select “Student Login” (works well on 
laptop, tablet or phone)

Class: CS475
ID is your @gmu.edu email

http://socrative.com
http://gmu.edu

