
Introduction to
Concurrency

CS 475, Spring 2018

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2018

Today
• Distributed & Concurrent Systems: high level

overview and key concepts

• Relevant links:
• Syllabus: http://www.jonbell.net/gmu-cs-475-

spring-2018/

2

http://www.jonbell.net/gmu-cs-475-spring-2018/
http://www.jonbell.net/gmu-cs-475-spring-2018/
http://www.jonbell.net/gmu-cs-475-spring-2018/

J. Bell GMU CS 475 Spring 2018

Course Topics
• This course will teach you how and why to build

distributed systems
• Distributed System is “a collection of independent

computers that appears to its users as a single
coherent system”

• This course will give you theoretical knowledge of
the tradeoffs that you’ll face when building
distributed systems

3

J. Bell GMU CS 475 Spring 2018

Course Topics

4

How do I run multiple things
at once on my computer?

How do I run a big task
across many computers?

Concurrency, first half of course

Distributed Systems, second half
of course

J. Bell GMU CS 475 Spring 2018

Layers
• From hardware
• To OS
• To programming languages
• To networks
• To libraries and middleware
• To developers

5

J. Bell GMU CS 475 Spring 2018

Grading
• 50% Homework

• 5 assignments, ~2 weeks to do each, all done
individually

• Your code will be autograded; you can resubmit an
unlimited number of times until the deadline and
view your score

• Also graded by hand for some non-functional issues
• 10% Quizes

• Pass/fail (Pass if you are in class and submit a quiz,
fail if you don’t)

• Use laptop or phone to complete the quiz in class
• 15% Midterm Exam, 20% Final Exam

6

J. Bell GMU CS 475 Spring 2018

Policies
• My promises to you:
• Quiz results will be available instananeously in

class; we will discuss quiz in real time
• Homework will be graded within 3 days of

submission
• Exams will be graded within a week

7

J. Bell GMU CS 475 Spring 2018

Policies
• Lateness on homework:

• 10% penalty if submitted UP TO 24 hours after
deadline

• No assignments will be accepted more than 24
hours late

• Out of fairness: no exceptions
• Attendance & Quizzes:

• You can miss up to 3 with no penalty
• Again, out of fairness: no exceptions beyond this

8

J. Bell GMU CS 475 Spring 2018

Honor Code
• Refresh yourself of the department honor code
• Homeworks are 100% individual

• Discussing assignments at high level: ok,
sharing code: not ok

• If in doubt, ask the instructor
• If you copy code, we WILL notice (see some of

my recent research results in “code relatives”)
• Quizes must be completed by you, and while in

class

9

J. Bell GMU CS 475 Spring 2018

Course Staff
• Prof Jonathan Bell (me)

• Office hour: ENGR 4422 Mon & Weds 2:15-3:00
pm or by appointment

• Areas of research: Software Engineering,
Program Analysis, Software Systems

10

Two hobbies: cycling, ice cream

J. Bell GMU CS 475 Spring 2018

Course Staff
• GTA: Arda Gumusalan

• Office Hours: TBA
• UTA: Thanh Luu

• Office Hours: TBA
• Please, no emails to instructor or TAs about the

class: use Piazza

11

J. Bell GMU CS 475 Spring 2018

Readings
• Bad news: no single book
• Good news: several free e-books are great references

• Operating Systems: Three Easy Pieces (Arpaci-Dusseau
and Arpaci-Dusseau) http://pages.cs.wisc.edu/~remzi/
OSTEP/

• Distributed Systems 3rd Edition (van Steen and
Tanenbaum) https://www.distributed-systems.net/
index.php/books/distributed-systems-3rd-edition-2017/

• Principles of Computer Systems Design Part II (Saltzer
and Kaashoek) https://ocw.mit.edu/resources/res-6-004-
principles-of-computer-system-design-an-introduction-
spring-2009/online-textbook/

12

http://pages.cs.wisc.edu/~remzi/OSTEP/
http://pages.cs.wisc.edu/~remzi/OSTEP/
https://www.distributed-systems.net/index.php/books/distributed-systems-3rd-edition-2017/
https://www.distributed-systems.net/index.php/books/distributed-systems-3rd-edition-2017/
https://ocw.mit.edu/resources/res-6-004-principles-of-computer-system-design-an-introduction-spring-2009/online-textbook/
https://ocw.mit.edu/resources/res-6-004-principles-of-computer-system-design-an-introduction-spring-2009/online-textbook/
https://ocw.mit.edu/resources/res-6-004-principles-of-computer-system-design-an-introduction-spring-2009/online-textbook/
https://ocw.mit.edu/resources/res-6-004-principles-of-computer-system-design-an-introduction-spring-2009/online-textbook/

J. Bell GMU CS 475 Spring 2018

Concurrency
• Goal: do multiple things, at once, coordinated, on

one computer
• Update UI
• Fetch data
• Respond to network requests
• Improve responsiveness, scalability

• Recurring problems:
• Coordination: what is shared, when, and how?

13

J. Bell GMU CS 475 Spring 2018

Abstractions
• Goal: take something complicated, make it “easy”
• Operating Systems

• From CPUs and memory to processes and
threads

• Distributed Systems
• From collections of computers to coherent

applications

14

J. Bell GMU CS 475 Spring 2018

Concurrency & Parallelism

15

T1 T2 T3 T44 different things:

T1 T2 T3 T4 T1 T1 T3 T4 T2 T1 T3Concurrency:
(1 processor)

Time

T1 T3 T4 T2 T1 T3
Parallelism:

(2 processors)
Time

T1 T2 T3 T4 T1 T1

J. Bell GMU CS 475 Spring 2018

Processes
• Def: A process is an instance of a running program
• Process provides each program with two key abstractions

• Logical control flow
• Each program seems to have exclusive use of the

CPU.
• Private address space

• Each program seems to have exclusive use of main
memory.

• How are these illusions maintained?
• Process executions interleaved (multitasking)
• Address spaces managed by virtual memory system

16

J. Bell GMU CS 475 Spring 2018

Processes

17

code heap
data files

stack

public class Sample
{
 static int i;
 public static void main(String[] args)
 {
 int k = 10;
 foo(k);
 }
 public static void foo(int in)
 {
 bar(in);
 }
 public static void bar(int in)
 {
 i = in;
 System.out.println("bar");
 }
}

Sample.main
args, k

Sample.foo
in

Sample.bar
in, i

System.out.println
this, “bar”

static int i;

Active Stack
Frame

J. Bell GMU CS 475 Spring 2018

Threads
• Traditional processes created and managed by the

OS kernel
• Process creation expensive - fork system call in

UNIX
• Context switching expensive
• Cooperating processes - no need for memory

protection (separate address spaces)

18

J. Bell GMU CS 475 Spring 2018

Coordination Problems
• Two threads call increment() at the same time
• What is the value of i afterwards?

19

static int i = 0;
public static void increment()
{
 i = i + 1;
}

Spoiler alert: not guaranteed to be 2

J. Bell GMU CS 475 Spring 2018

Processes vs Threads

20

code heap
data files

stack

code heap
data files

stack stackstack

Single-Threaded Process Multi-Threaded Process

Joel Spolsky

“All non-trivial abstractions, to
some degree, are leaky.”

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

J. Bell GMU CS 475 Spring 2018

Leaky Abstractions
• Completely hiding the underlying complexity is

never possible, usually not desirable
• Example: our first two abstractions (concurrency) -

process and thread

22

Hardware View

J. Bell GMU CS 475 Spring 2018

Processes vs Threads
• Context Switching

• Processor context: The minimal collection of
values stored in the registers of a processor
used for the execution of a series of instructions
(e.g., stack pointer, addressing registers,
program counter).

• When switching processes, all of that data
needs to get flushed out (by the OS)

• Threads share the same address space: no need
to do this switch

23

J. Bell GMU CS 475 Spring 2018

Processes vs Threads
• Although more expensive to switch, OS provides

isolation between processes

24

code heap
data files

stack

Process 1

code heap
data files

stack

Process 2

Only can communicate via
specifically exposed memory

(private by default)

J. Bell GMU CS 475 Spring 2018

Processes vs Threads
• Although more expensive to switch, processes OS

provides isolation between processes

25

code heap
data files

stack stackstack

Multi-Threaded Process

All heap data is shared
between threads

J. Bell GMU CS 475 Spring 2018

Processes vs Threads
• Example: browsers launching tabs in their own

process

26

J. Bell GMU CS 475 Spring 2018

More Abstractions
• Process + Thread -> one computer
• How can we abstract many computers working

together?
• What does that even look like?

27

J. Bell GMU CS 475 Spring 2018

Distributed Systems

28

Model:
Many servers talking through cloud

J. Bell GMU CS 475 Spring 2018

Distributed Systems

29

Model:
Servers and Clients talking through cloud

J. Bell GMU CS 475 Spring 2018

Distributed Systems

30

Model:
Many clients talking through cloud

J. Bell GMU CS 475 Spring 2018

Distributed Systems

31

Model:
Two clients talking through cloud

J. Bell GMU CS 475 Spring 2018

Why expand to distributed systems?

• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

32

“Distributed Systems for Fun and Profit”, Takada

J. Bell GMU CS 475 Spring 2018

Distributed Systems Goals
• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

“the ability of a system, network, or
process, to handle a growing

amount of work in a capable manner
or its ability to be enlarged to
accommodate that growth.”

33

“Distributed Systems for Fun and Profit”, Takada

J. Bell GMU CS 475 Spring 2018

Distributed Systems Goals
• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

34

“is characterized by the amount of
useful work accomplished by a

computer system compared to the
time and resources used.”

J. Bell GMU CS 475 Spring 2018

Distributed Systems Goals
• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

35

“The state of being latent; delay, a
period between the initiation of
something and the it becoming

visible.”

J. Bell GMU CS 475 Spring 2018

Distributed Systems Goals
• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

36

“the proportion of time a system is in
a functioning condition. If a user

cannot access the system, it is said
to be unavailable.”

Availability = uptime / (uptime + downtime).

Availability % Downtime/year
90% >1 month
99% < 4 days

99.9% < 9 hours
99.99% <1 hour
99.999% 5 minutes

99.9999% 31 seconds

Often measured in “nines”

J. Bell GMU CS 475 Spring 2018

Distributed Systems Goals
• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

37

“ability of a system to behave in a
well-defined manner once faults

occur”

What kind of faults?

Disks fail
Power supplies fail

Power goes out

Networking fails
Security breached

Datacenter goes offline

J. Bell GMU CS 475 Spring 2018

More machines, more problems

• Say there’s a 1% chance of having some hardware
failure occur to a machine (power supply burns
out, hard disk crashes, etc)

• Now I have 10 machines
• Probability(at least one fails) = 1 - Probability(no

machine fails) = 1-(1-.01)10 = 10%
• 100 machines -> 63%
• 200 machines -> 87%
• So obviously just adding more machines doesn’t

solve fault tolerance

38

J. Bell GMU CS 475 Spring 2018

More machines, more problems

• PLUS, the network may be:
• Unreliable
• Insecure
• Slow
• Expensive
• Limited

39

J. Bell GMU CS 475 Spring 2018

Constraints
• Number of nodes
• Distance between nodes

40

J. Bell GMU CS 475 Spring 2018

Constraints
• Number of nodes
• Distance between nodes

41
DC

NY

LONDON

SFEven if cross-city links are fast and cheap (are they?)
Still that pesky speed of light…

J. Bell GMU CS 475 Spring 2018

Recurring Solution #1: Partitioning

42

A B

All accesses go to single server

J. Bell GMU CS 475 Spring 2018

Recurring Solution #1: Partitioning

• Divide data up in some (hopefully logical) way
• Makes it easier to process data concurrently

(cheaper reads)

43

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…

Z]

Each server has 50% of data, limits
amount of processing per server.

Even if 1 server goes down, still
have 50% of the data online.

J. Bell GMU CS 475 Spring 2018

Recurring Solution #2: Replication

44

A B

All accesses go to single server

J. Bell GMU CS 475 Spring 2018

Recurring Solution #2: Replication

45

A B

Entire data set is copied

A B

J. Bell GMU CS 475 Spring 2018

Recurring Solution #2: Replication

• Improves performance:
• Client load can be evenly shared between

servers
• Reduces latency: can place copies of data

nearer to clients
• Improves availability:

• One replica fails, still can serve all requests from
other replicas

46

J. Bell GMU CS 475 Spring 2018

Partitioning + Replication

47

A B

J. Bell GMU CS 475 Spring 2018

Partitioning + Replication

48

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…

Z]

J. Bell GMU CS 475 Spring 2018

Partitioning + Replication

49

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…
Z]

DC NYC

LondonSF

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…
Z]

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…
Z]

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…
Z]

J. Bell GMU CS 475 Spring 2018

Recurring Problem: Replication

• Replication solves some problems, but creates a
huge new one: consistency

50

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

OK, we obviously need to actually do something here to
replicate the data… but what?

J. Bell GMU CS 475 Spring 2018

How much to hide?
• Completely hiding how distributed a system is may

be too much:
• Communication latencies can't be hidden (pesky

speed of light!)
• Completely hiding failures is impossible (we will

prove this later in the semester)
• Can never distinguish a slow computer from

one that is crashed
• Hiding more adds performance costs

51

J. Bell GMU CS 475 Spring 2018

Exit-ticket activity

52

Go to socrative.com and select “Student Login” (works well on
laptop, tablet or phone)

Class: CS475
ID is your @gmu.edu email

http://socrative.com
http://gmu.edu

