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Review: Domain Name System
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Review: Domain Name System - Scale
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Review: Multicast

• Multicast increases the efficiency of networks 
• Point-to-point broadcast requires the sender to send N copies of the message 
• Multicast broadcast only sends one copy 
• Network switches replicate the traffic faster and more efficiently 
• Unicast: 15 copies
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Announcements
• HW3 is out! 

• http://www.jonbell.net/gmu-cs-475-spring-2018/
homework-3/ 

• Today: Distributed Filesystems 
• Abstraction 
• What leaks through 
• Implementation tradeoffs 

• Additional reading: OS TEP Ch 49
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Files
• File: 

• Name 
• Size (bytes) 
• Create/Access/Modification Time 
• Contents (binary) 

• Directory: 
• Maintains a list of the files (and their metadata) in 

that directory
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File Operations
• Create 
• Write – at write pointer location 
• Read – at read pointer location 
• Reposition within file - seek 
• Delete 
• Truncate 
• Open(Fi) – search the directory structure on disk for 

entry Fi, and move the content of entry to memory 
• Close (Fi) – move the content of entry Fi in memory to 

directory structure on disk
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Directory Operations
• Search for a file 
• Create a file 
• Delete a file 
• List a directory 
• Rename a file 
• Traverse the file system
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Open file locking
• Provided by some operating systems and file systems 

• Similar to reader-writer locks 
• Shared lock similar to reader lock – several processes 

can acquire concurrently 
• Exclusive lock similar to writer lock 

• Mediates access to a file 
• Mandatory or advisory: 

• Mandatory – access is denied depending on locks 
held and requested 

• Advisory – processes can find status of locks and 
decide what to do
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Directory Structure
• Directories contain information about the files in 

them 
• Directories can be nested 
• Operations on directories: 

• Create file 
• List files 
• Delete file 
• Rename file
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Filesystems
• Define how files and directory structure is 

maintained 
• Exposes this information to the OS via a standard 

interface (driver) 
• OS can provide user with access to that filesystem 

when it is mounted
• (Example: NFS, AFP, SMB)
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Filesystem Functionality
• Directory management (maps entries in a hierarchy 

of names to files-on-disk) 
• File management (manages adding, reading, 

changing, appending, deleting) individual files 
• Space management:  where on disk to store these 

things? 
• Metadata management
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Mounting Filesystems
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Distributed File Systems
• Goals 

• Shared filesystem that will look the same as a 
local filesystem 

• Scale to many TB’s of data/many users 
• Fault tolerance 
• Performance
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Distributed File Systems
• Challenges: 

• Heterogeneity (different kinds of computers with 
different kinds of network links) 

• Scale (maybe lots of users) 
• Security (access control) 
• Failures 
• Concurrency
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Strawman Approach
• Use RPC to forward every filesystem operation to the 

server 
• Server serializes all accesses, performs them, and 

sends back result.
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Strawman Approach

19

Client Server

open(“file”)

seek(fd, 10)
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Strawman Approach
• Use RPC to forward every filesystem operation to 

the server 
• Server serializes all accesses, performs them, and 

sends back result. 
• Great:  Same behavior as if both programs were 

running on the same local filesystem! 
• Bad:  Performance can stink.  Latency of access to 

remote server often much higher than to local 
memory
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NFS
• Cache file blocks, file headers, etc., at both clients 

and servers. 
• Advantage:  No network traffic if open/read/write/

close can be done locally. 
• But:  failures and cache consistency. 
• NFS trades some consistency for increased 

performance... let’s look at the protocol.
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NFS + Failures

22

Client Server

open(“file”)

seek(fd, 10)
CRASH!

fd

Reboot!
read(fd)

Problem: read() depends on server remembering that client 
did seek()!

read from wrong position?

How to solve?
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NFS + Server crash?
• Data in memory but not disk lost 
• So... what if client does seek() ;  /* SERVER CRASH 

*/; read() 
• If server maintains file position, this will fail.  Ditto 

for open(), read() 
• Stateless protocol:  requests specify exact state.  

read() -> read( [position]).  no seek on server.
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NFS + Server Crash
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Client Server

open(“file”)

seek(fd, 10)
CRASH!

fd

Reboot!
read(fd, offset)

read is correct because 
server doesn’t keep track of any 

state
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NFS + Lost Messages?
• Lost messages:  what if we lose acknowledgement 

for delete(“foo”) 
• And in the meantime, another client created foo a 

new file called foo? 
• Solution: Operations are idempotent 

• How can we ensure this?  Unique IDs on files/
directories.  It’s not delete(“foo”), it’s 
delete(1337f00f), where that ID won’t be reused.
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NFS + Client Crashes
• Might lose data in client cache 
• Doesn’t matter: 

• If lose other people’s data, can always retrieve it 
again 

• Local writes go to cache until close() is called and 
returns (which flushes to server) 

• If lose your own writes sooner, SOL
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NFS Failure Handling
• You can choose -  

• retry until things get through to the server 
• return failure to client 

• Most client apps can’t handle failure of close() call.  
NFS tries to be a transparent distributed filesystem 
-- so how can a write to local disk fail?  And what 
do we do, anyway? 

• Usual option:  hang for a long time trying to contact 
server
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NFS Failure Handling
• Not everything is idempotent! Some stuff leaks 

through!
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Client Server

mkdir(“dir”)

mkdir(“dir”) OKOK

error: “dir” exists
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Cache Consistency: Update Visibility
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Client 1 
cache

Server
File 1: “a”

Client 2 
cache

1. Read File: “a”

File 1: “a”

2. Write File: “b”

File 1: “b”File 1: “b”

Update Visibility: When do Client 2’s writes become apparent to the server?
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Cache Consistency: Stale reads
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Client 1 
cache

Server
File 1: “a”

Client 2 
cache

1. Read File: “a”

File 1: “a”

2. Write File: “b”

File 1: “b”File 1: “b”

Stale reads: Once the server gets updated, how does client 1 know that 
File 1 has been updated?
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Cache Consistency Strawman
• Before any read(), ask server if file has changed 

• If not, use cached version 
• If so, get fresh data from server 

• Bad news: floods the server with requests 
• Anyway: this alone is not enough to make sure 

each read() sees the latest write() 
• How do we know when the write() gets 

committed?
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NFS Caching - Close-to-open
• Implemented by most NFS clients  
• Contract: 

• if client A write()s a file, then close()s it, 
• then client B open()s the file, and read()s it, 
• client B’s reads will reflect client A’s writes  

• Benefit: clients need only contact server during 
open() and close()—not on every read() and write() 
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NFS Caching - Close-to-open
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5. Open File
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Note: in practice, client caches periodically check server to see if still valid
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NFS + Locking
• Does NFS support locks? 
• Nope! How could it support locks and still be 

stateless?  
• Fault-tolerant lock servers are really hard to 

implement 
• We’ll discuss in lectures 15-18
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Sidebar: Heartbeat Protocols
• Allow client/server to remain aware of each other’s status 
• For HW3: does client still have locks (client checking server, 

server checking client) 
• For NFS: is cache still valid? (client checking server)

35

Client Server

lock(“foo”)

OK, stamp = 1

Hi, I’m stamp 1, still have foo

CRASH!

Hmm, I guess 
server is gone, 

maybe lock is not 
valid
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Sidebar: Heartbeat Protocols
• Allow client/server to remain aware of each other’s status 
• For HW3: does client still have locks (client checking server, 

server checking client) 
• For NFS: is cache still valid? (client checking server)
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Client Server

lock(“foo”)

OK, stamp = 1

Hi, I’m stamp 1, still have foo

OK
CRASH!

Hmm, I guess foo 
is no longer locked
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Sidebar: Heartbeat Protocols
• We call these time-limited locks leases
• What does a lease guarantee? 

• If no network failures 
• Locks that are relinquished when client 

crashes 
• If network failures/delays: 

• Nothing
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NFS Security
• What prevents unauthorized users from issuing 

RPCs to an NFS server? 
• What prevents unauthorized users from forging 

NFS replies to an NFS client? 
• Nothing: IP-address based security only. Client 

A can access mount M. That’s it!
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NFS Limitations
• Security: what if untrusted users can be root on 

client machines? 
• Scalability: how many clients can share one 

server? 
• Writes always go through to server 
• Some writes are to “private,” unshared files that 

are deleted soon after creation 
• Can you run NFS on a large, complex network? 

• Effects of latency? Packet loss? Bottlenecks?
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Other Approaches
• What about handling hundreds of thousands of 

concurrent clients and exabytes of data? 
• We will discuss GFS, the Google File System in 

lecture 20 - it does exactly this!
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