
Distributed
Filesystems

CS 475, Spring 2018

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2018

HW2 Discussion

2

J. Bell GMU CS 475 Spring 2018

HW2 Discussion

3

J. Bell GMU CS 475 Spring 2018

Review: Domain Name System

org comedu govnet

gmu

www cs

www

uk

root-servers

www

Global
Layer

Administrational
Layer

Managerial
Layer

4

Root Servers

J. Bell GMU CS 475 Spring 2018

Review: Domain Name System - Scale

org comedu govnet

gmu

www cs

www

uk

root-servers

www

Global
Layer

Administrational
Layer

Managerial
Layer

980 physical servers

13 6 6 13 4 8

3 4

3*

1**

1**1

5

J. Bell GMU CS 475 Spring 2018

Review: Multicast

• Multicast increases the efficiency of networks
• Point-to-point broadcast requires the sender to send N copies of the message
• Multicast broadcast only sends one copy
• Network switches replicate the traffic faster and more efficiently
• Unicast: 15 copies

Sender

Host HostHost

Switch

Host HostHost

Switch
6

1 1 1

3

1 1 1

6

J. Bell GMU CS 475 Spring 2018

Announcements
• HW3 is out!

• http://www.jonbell.net/gmu-cs-475-spring-2018/
homework-3/

• Today: Distributed Filesystems
• Abstraction
• What leaks through
• Implementation tradeoffs

• Additional reading: OS TEP Ch 49

7

http://www.jonbell.net/gmu-cs-475-spring-2018/homework-3/
http://www.jonbell.net/gmu-cs-475-spring-2018/homework-3/
http://pages.cs.wisc.edu/~remzi/OSTEP/dist-nfs.pdf

J. Bell GMU CS 475 Spring 2018

Files
• File:

• Name
• Size (bytes)
• Create/Access/Modification Time
• Contents (binary)

• Directory:
• Maintains a list of the files (and their metadata) in

that directory

8

J. Bell GMU CS 475 Spring 2018

File Operations
• Create
• Write – at write pointer location
• Read – at read pointer location
• Reposition within file - seek
• Delete
• Truncate
• Open(Fi) – search the directory structure on disk for

entry Fi, and move the content of entry to memory
• Close (Fi) – move the content of entry Fi in memory to

directory structure on disk

9

J. Bell GMU CS 475 Spring 2018

Directory Operations
• Search for a file
• Create a file
• Delete a file
• List a directory
• Rename a file
• Traverse the file system

10

J. Bell GMU CS 475 Spring 2018

Open file locking
• Provided by some operating systems and file systems

• Similar to reader-writer locks
• Shared lock similar to reader lock – several processes

can acquire concurrently
• Exclusive lock similar to writer lock

• Mediates access to a file
• Mandatory or advisory:

• Mandatory – access is denied depending on locks
held and requested

• Advisory – processes can find status of locks and
decide what to do

11

J. Bell GMU CS 475 Spring 2018

Directory Structure
• Directories contain information about the files in

them
• Directories can be nested
• Operations on directories:

• Create file
• List files
• Delete file
• Rename file

12

J. Bell GMU CS 475 Spring 2018

Filesystems
• Define how files and directory structure is

maintained
• Exposes this information to the OS via a standard

interface (driver)
• OS can provide user with access to that filesystem

when it is mounted
• (Example: NFS, AFP, SMB)

13

J. Bell GMU CS 475 Spring 2018

Filesystem Functionality
• Directory management (maps entries in a hierarchy

of names to files-on-disk)
• File management (manages adding, reading,

changing, appending, deleting) individual files
• Space management: where on disk to store these

things?
• Metadata management

14

J. Bell GMU CS 475 Spring 2018

Mounting Filesystems

15

/

Users

jon

Volumes

cs475

Internal HD (HFS+)

CFS

cfsmnt1

folder

Remote Server (AFP)

gmuhome

…

External HD (HFS+)

externalHD

…

CFS
folder

cfsmnt2

Filesystem driver is passed path only from its
mount point (e.g. it doesn’t care where it is

mounted)

J. Bell GMU CS 475 Spring 2018

Distributed File Systems
• Goals

• Shared filesystem that will look the same as a
local filesystem

• Scale to many TB’s of data/many users
• Fault tolerance
• Performance

16

J. Bell GMU CS 475 Spring 2018

Distributed File Systems
• Challenges:

• Heterogeneity (different kinds of computers with
different kinds of network links)

• Scale (maybe lots of users)
• Security (access control)
• Failures
• Concurrency

17

J. Bell GMU CS 475 Spring 2018

Strawman Approach
• Use RPC to forward every filesystem operation to the

server
• Server serializes all accesses, performs them, and

sends back result.

18

Client Server
read(FD,10); read(FD,10);

File System
Server Stub

RPC Magic

File System
Client Stub

J. Bell GMU CS 475 Spring 2018

Strawman Approach

19

Client Server

open(“file”)

seek(fd, 10)

fd

read(fd)

J. Bell GMU CS 475 Spring 2018

Strawman Approach
• Use RPC to forward every filesystem operation to

the server
• Server serializes all accesses, performs them, and

sends back result.
• Great: Same behavior as if both programs were

running on the same local filesystem!
• Bad: Performance can stink. Latency of access to

remote server often much higher than to local
memory

20

J. Bell GMU CS 475 Spring 2018

NFS
• Cache file blocks, file headers, etc., at both clients

and servers.
• Advantage: No network traffic if open/read/write/

close can be done locally.
• But: failures and cache consistency.
• NFS trades some consistency for increased

performance... let’s look at the protocol.

21

J. Bell GMU CS 475 Spring 2018

NFS + Failures

22

Client Server

open(“file”)

seek(fd, 10)
CRASH!

fd

Reboot!
read(fd)

Problem: read() depends on server remembering that client
did seek()!

read from wrong position?

How to solve?

J. Bell GMU CS 475 Spring 2018

NFS + Server crash?
• Data in memory but not disk lost
• So... what if client does seek() ; /* SERVER CRASH

*/; read()
• If server maintains file position, this will fail. Ditto

for open(), read()
• Stateless protocol: requests specify exact state.

read() -> read([position]). no seek on server.

23

J. Bell GMU CS 475 Spring 2018

NFS + Server Crash

24

Client Server

open(“file”)

seek(fd, 10)
CRASH!

fd

Reboot!
read(fd, offset)

read is correct because
server doesn’t keep track of any

state

J. Bell GMU CS 475 Spring 2018

NFS + Lost Messages?
• Lost messages: what if we lose acknowledgement

for delete(“foo”)
• And in the meantime, another client created foo a

new file called foo?
• Solution: Operations are idempotent

• How can we ensure this? Unique IDs on files/
directories. It’s not delete(“foo”), it’s
delete(1337f00f), where that ID won’t be reused.

25

J. Bell GMU CS 475 Spring 2018

NFS + Client Crashes
• Might lose data in client cache
• Doesn’t matter:

• If lose other people’s data, can always retrieve it
again

• Local writes go to cache until close() is called and
returns (which flushes to server)

• If lose your own writes sooner, SOL

26

J. Bell GMU CS 475 Spring 2018

NFS Failure Handling
• You can choose -

• retry until things get through to the server
• return failure to client

• Most client apps can’t handle failure of close() call.
NFS tries to be a transparent distributed filesystem
-- so how can a write to local disk fail? And what
do we do, anyway?

• Usual option: hang for a long time trying to contact
server

27

J. Bell GMU CS 475 Spring 2018

NFS Failure Handling
• Not everything is idempotent! Some stuff leaks

through!

28

Client Server

mkdir(“dir”)

mkdir(“dir”) OKOK

error: “dir” exists

J. Bell GMU CS 475 Spring 2018

Cache Consistency: Update Visibility

29

Client 1
cache

Server
File 1: “a”

Client 2
cache

1. Read File: “a”

File 1: “a”

2. Write File: “b”

File 1: “b”File 1: “b”

Update Visibility: When do Client 2’s writes become apparent to the server?

J. Bell GMU CS 475 Spring 2018

Cache Consistency: Stale reads

30

Client 1
cache

Server
File 1: “a”

Client 2
cache

1. Read File: “a”

File 1: “a”

2. Write File: “b”

File 1: “b”File 1: “b”

Stale reads: Once the server gets updated, how does client 1 know that
File 1 has been updated?

J. Bell GMU CS 475 Spring 2018

Cache Consistency Strawman
• Before any read(), ask server if file has changed

• If not, use cached version
• If so, get fresh data from server

• Bad news: floods the server with requests
• Anyway: this alone is not enough to make sure

each read() sees the latest write()
• How do we know when the write() gets

committed?

31

J. Bell GMU CS 475 Spring 2018

NFS Caching - Close-to-open
• Implemented by most NFS clients
• Contract:

• if client A write()s a file, then close()s it,
• then client B open()s the file, and read()s it,
• client B’s reads will reflect client A’s writes

• Benefit: clients need only contact server during
open() and close()—not on every read() and write()

32

J. Bell GMU CS 475 Spring 2018

NFS Caching - Close-to-open

33

Client 1
cache

Server
File 1: “a”

Client 2
cache

2. Read File: “a”

File 1: “a”

4. Write File: “b”

File 1: “b”File 1: “b”

1. Open File 3. Open File

7. Close File

Client 3
cache

9. Read File: “b”
8. Open File

Client 4
cache

6. Read File: “a”
5. Open File

File 1: “a”File 1: “b”

Note: in practice, client caches periodically check server to see if still valid

J. Bell GMU CS 475 Spring 2018

NFS + Locking
• Does NFS support locks?
• Nope! How could it support locks and still be

stateless?
• Fault-tolerant lock servers are really hard to

implement
• We’ll discuss in lectures 15-18

34

J. Bell GMU CS 475 Spring 2018

Sidebar: Heartbeat Protocols
• Allow client/server to remain aware of each other’s status
• For HW3: does client still have locks (client checking server,

server checking client)
• For NFS: is cache still valid? (client checking server)

35

Client Server

lock(“foo”)

OK, stamp = 1

Hi, I’m stamp 1, still have foo

CRASH!

Hmm, I guess
server is gone,

maybe lock is not
valid

J. Bell GMU CS 475 Spring 2018

Sidebar: Heartbeat Protocols
• Allow client/server to remain aware of each other’s status
• For HW3: does client still have locks (client checking server,

server checking client)
• For NFS: is cache still valid? (client checking server)

36

Client Server

lock(“foo”)

OK, stamp = 1

Hi, I’m stamp 1, still have foo

OK
CRASH!

Hmm, I guess foo
is no longer locked

J. Bell GMU CS 475 Spring 2018

Sidebar: Heartbeat Protocols
• We call these time-limited locks leases
• What does a lease guarantee?

• If no network failures
• Locks that are relinquished when client

crashes
• If network failures/delays:

• Nothing

37

J. Bell GMU CS 475 Spring 2018

NFS Security
• What prevents unauthorized users from issuing

RPCs to an NFS server?
• What prevents unauthorized users from forging

NFS replies to an NFS client?
• Nothing: IP-address based security only. Client

A can access mount M. That’s it!

38

J. Bell GMU CS 475 Spring 2018

NFS Limitations
• Security: what if untrusted users can be root on

client machines?
• Scalability: how many clients can share one

server?
• Writes always go through to server
• Some writes are to “private,” unshared files that

are deleted soon after creation
• Can you run NFS on a large, complex network?

• Effects of latency? Packet loss? Bottlenecks?

39

J. Bell GMU CS 475 Spring 2018

Other Approaches
• What about handling hundreds of thousands of

concurrent clients and exabytes of data?
• We will discuss GFS, the Google File System in

lecture 20 - it does exactly this!

40

