
Concurrency &
Performance

CS 475, Spring 2018

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2018

Locking in Java
• Most locks are reentrant: if you hold it, and ask for it

again, you don’t have to wait (because you already
have it)

• Basic primitives:
• synchronized{}
• wait
• notify

• Plus…
• Lock API… lock.lock(), lock.unlock()
• The preferred way

2

J. Bell GMU CS 475 Spring 2018

Locking Granularity
• BIG design question in writing concurrent

programs: how many locks should you have?
• Example: Distributed filesystem

• It would be correct to block all clients from
reading any file, when one client writes a file

• However, this would not be performant at all!
• It would be much better to instead lock on

individual files
• More locks -> more complicated semantics and

tricky to avoid deadlocks, races

3

J. Bell GMU CS 475 Spring 2018

Designing Locking Strategies
• How we acquire and release locks can hugely

impact performance
• Two solutions might be correct, but one may waste

more time by:
• Acquiring and releasing unnecessary locks
• Waiting for locks

4

J. Bell GMU SWE 622 Spring 2017

Dining Philosophers
• N philosophers seated around a

circular table
• One chopstick between each

philosopher (N chopsticks)
• A philosopher picks up both

chopsticks next to him to eat
• Philosophers may not pick up

both chopsticks at the same
time

• How do they all eat without
deadlocking or starving?

5

J. Bell GMU SWE 622 Spring 2017

Dining Philosophers
• Give each chopstick a lock
• Is this enough?
• Could deadlock!
• Actual solutions:

• Pick up one chopstick, wait for the
other for N msec, otherwise put down
what you have, wait, and try again

• Only allow 4 philosophers to pick up
chopsticks at once

• Even # seats pick up right chopstick,
odd # seats pick up left

6

1
2

3
4

5

J. Bell GMU SWE 622 Spring 2017

Dining Philosophers
• Give each chopstick a lock
• Is this enough?
• Could deadlock!
• Actual solutions:

• Pick up one chopstick, wait for the
other for N msec, otherwise put down
what you have, wait, and try again

• Only allow 4 philosophers to pick up
chopsticks at once

• Even # seats pick up right chopstick,
odd # seats pick up left

7

1
2

3
4

5

1,450 grains of rice/sec

5,431,616 grains of rice/sec

12,450,856 grains of rice/sec

J. Bell GMU CS 475 Spring 2018

Announcements
• Reminder: HW2 is out

• http://www.jonbell.net/gmu-cs-475-spring-2018/homework-2/
• Today: Different concurrent programming models and their

impacts on performance
• Cool, vaguely relevant podcasts:

• Radiolab - Million Dollar Microsecond
• Planet Money - BOTUS

• Java Streams tutorial - http://winterbe.com/posts/
2014/07/31/java8-stream-tutorial-examples/

• Fork/Join tutorial - https://docs.oracle.com/javase/tutorial/
essential/concurrency/forkjoin.html

8

http://www.jonbell.net/gmu-cs-475-spring-2018/homework-2/
http://www.radiolab.org/story/267195-million-dollar-microsecond/
https://www.npr.org/sections/money/2017/04/07/522897876/meet-botus-planet-money-s-stock-trading-twitter-bot
http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/
http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/
http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

J. Bell GMU CS 475 Spring 2018

Designing for Performance
• What factors can impact performance?

• Limits imposed by physics
• Limits imposed by technology
• Limits imposed by economics

• These limits can force us to make tradeoffs
• Smaller chips are faster, but harder to dissipate

heat
• Need to serve X clients, can only spend Y on

CPUs

9

J. Bell GMU CS 475 Spring 2018

Performance Metrics
• Capacity

• Consistent measure of a service’s size or amount of resources
• Utilization

• Percentage of that resource used for a workload
• Overhead

• Percentage of that utilization used for bookkeeping
• Useful Work

• Percentage of that utilization used for what we actually need to
do

• Latency
• How long it takes an input to propagate through a system and

generate an output
• Throughput

• Work done per time

10

}
Adjusted by buying m

ore resources

J. Bell GMU CS 475 Spring 2018

Resource Metrics - Example

• Say, capacity is measured in terms of processor
cycles

• Workload might be processing a single image
• Utilization could 10% -> 90% of processor is unused
• Overhead could go to the OS, perhaps 5% of the

CPU going to OS bookkeeping
• Useful work would then be 5%

11

Camera Image
Service

Sends images

Processes images

J. Bell GMU CS 475 Spring 2018

Latency
• In client/server model, latency is simply: time

between client sending request and receiving
response

• What contributes to latency?
• Latency sending the message
• Latency processing the message
• Latency sending the response

• Adding pipelined components -> latency is
cumulative

12

Camera
Image ServiceSends images

Processes images

Phase 1 Phase 210ns
5ns

5ns

10ns Total latency: 30ns

J. Bell GMU CS 475 Spring 2018

Throughput
• Measure of the rate of useful work done for a given

workload
• Example:

• Throughput is camera frames processed/second
• When adding multiple pipelined components ->

throughput is the minimum value

13

Camera
Image ServiceSends images

Processes images

Phase 1 Phase 2
10fps 29fps

1000 fps

1000 fps

Total
throughput:

10fps

J. Bell GMU CS 475 Spring 2018

Designing for Performance
• Measure system to find which aspect of

performance is lacking (throughput or latency)
• Measure each component to identify bottleneck
• Identify if fixing that bottleneck will realistically

improve system performance
• Measure improvement
• Repeat

14

J. Bell GMU CS 475 Spring 2018

Reducing Latency
• Often more challenging than increasing throughput

• Examples:
• Physical - Speed of light (network

transmissions over long distances)
• Algorithmic - Looking up an item in a hash

table is limited by hash function
• Economic - Adding more RAM gets expensive

15

J. Bell GMU CS 475 Spring 2018

Latency & Stock Trading
• Buy low/sell high
• Most of skill is in knowing what a stock will do

before your competitors

16

J. Bell GMU CS 475 Spring 2018

Latency & Stock Trading
• Algorithmic trading -> computer programs look at

various factors, place trades automatically
• Example:

• President Trump tweets positively about a
company -> price goes up

• Write a script to check twitter for company
mentions, immediately buy/sell stock

• Get in and out before it hits CNN!
• https://www.npr.org/sections/money/

2017/04/07/522897876/meet-botus-planet-
money-s-stock-trading-twitter-bot

17

https://www.npr.org/sections/money/2017/04/07/522897876/meet-botus-planet-money-s-stock-trading-twitter-bot
https://www.npr.org/sections/money/2017/04/07/522897876/meet-botus-planet-money-s-stock-trading-twitter-bot
https://www.npr.org/sections/money/2017/04/07/522897876/meet-botus-planet-money-s-stock-trading-twitter-bot

J. Bell GMU CS 475 Spring 2018

Latency & Stock Trading
• This only works if you can make your trades before

other people find out
• What if you set up this bot in Chicago, and I set

one up in NYC?
• I would beet you to it, every time.

18

J. Bell GMU CS 475 Spring 2018

Latency & Stock Trading
• What is the speed of light?

• ~300,000 km/sec
• How fast does your CPU execute an instruction?

• 0.33 nanoseconds (say, 3Ghz CPU)
• How far does light travel in 1 CPU cycle?

• 10 cm
• How many instructions does your CPU execute in the time

it takes light to travel from Chicago to NYC and back?
• ~700 miles -> 7.4msec -> 22 million instructions

• Being in NYC would let me execute 22 million instructions
in the time it took you to send your stock order to NYC
and get a response!

19

J. Bell GMU CS 475 Spring 2018

Reducing Latency with $$$$
• People actually care a LOT about the latency

between NYC and Chicago, because commodities
are traded in Chicago and stocks are traded in
NYC
• Changes to commodities prices (e.g. ethanol)

can dramatically impact price of some stocks

20

J. Bell GMU CS 475 Spring 2018

Reducing Latency with $$$$
• It’s not quite as simple as 700 miles -> 7.4msec
• There are streams, mountains, etc… more like

1,000 miles
• Light is refracted in a fiber optic cable is ~31%

slower
• What do we do if money is no object?

21

J. Bell GMU CS 475 Spring 2018

Reducing Latency with Billions of Dollars

22https://www.zerohedge.com/news/chicago-new-york-and-back-85-milliseconds

https://www.zerohedge.com/news/chicago-new-york-and-back-85-milliseconds

J. Bell GMU CS 475 Spring 2018

Reducing Latency for Mortals
• Instead of fighting nature, look closer at the

structure of the problem
• Normal trick is to exploit workload properties to

reduce latency, instead

23

J. Bell GMU CS 475 Spring 2018

Reducing Latency

24

Facebook.com
Request Cache

Check
Send

response
ResponseBuild

friends list
Build

Suggestions
Build

Newsfeed

J. Bell GMU CS 475 Spring 2018

Reducing Latency
• Approach: Optimize for the common case (aka

fast path and slow path)

25

Facebook.com

Request Cache
Check

Send
response

Response

Build
friends list

Build
Suggestions

Build
Newsfeed

Serve from
cacheFast path

Slow path

J. Bell GMU CS 475 Spring 2018

Reducing Latency
• Approach: use concurrency
• Limited by serial section

26

Facebook.com

Request Cache
Check

Send
response

Response

Build
friends list

Build
Suggestions

Build
Newsfeed

Serve from
cache

Fast path

Slow path

J. Bell GMU CS 475 Spring 2018

Reducing Latency
• Approach: Use better technology
• However, processors are limited by heat dissipation
• Waiting for processors to get faster is not a great approach these

days
• Instead: move computation from resource constrained devices to

cloud

27

Wait for better CPUs
worked better before

2005

J. Bell GMU CS 475 Spring 2018

Improving Throughput
• Might be able to hide latency by overlapping many

requests (increase throughput)
• Example: Want to make client/server application

appear faster
• But, client on east coast communicates with west

coast (20msec)
• In 20msec, a processor can execute millions of

instructions
• Instead: batch lots of requests into a single

message, have more processing on client side

28

J. Bell GMU CS 475 Spring 2018

Improving Throughput
• Introduce concurrency into our pipeline
• Each stage runs in its own thread (or many

threads, perhaps)
• If a stage completes its task, it can start

processing the next request right away
• E.g. our system will process multiple requests at

the same time

29

Facebook.comRequest
Cache
Check

Send
response

Response
Build

friends list
Build

Suggestions
Build

Newsfeed

J. Bell GMU CS 475 Spring 2018

Improving Throughput
• Can also introduce concurrency to stages
• If one stage is a bottleneck, can we add more

copies of it?

30

Facebook.comRequest
Cache
Check

Send
response

Response
Build

friends list
Build

Suggestions
Build

Newsfeed

Build
Newsfeed

Build
Newsfeed

J. Bell GMU CS 475 Spring 2018

Queueing and Overload
• What happens when a slow component gets overloaded?
• Need to place a bounded buffer in between components!

• When buffer becomes full, it prevents new requests
from being accepted

31

Facebook.comRequest
Cache
Check

Send
response

Response
Build

friends list
Build

Suggestions
Build

Newsfeed
Build

Newsfeed
Build

Newsfeed

Bu
ffe

r

J. Bell GMU CS 475 Spring 2018

Asynchronous Programming
• AKA event-driven programming
• A paradigm that lends itself well to scaling,

especially in a multi-stage systems (like the
example with Facebook)

• Allows us to think about what is done, abstract
away how it is done

• We will discuss two asynchronous models:
streams, and Promises, neither of which make
you think about threads (or locks?)

32

J. Bell GMU CS 475 Spring 2018

Streams
• Java 8 introduced the concept of Streams
• A stream is a sequence of objects
• Streams have functions that you can perform on them,

which are (mostly) non-interfering and stateless
• Non-interfering: Does not modify the actual stream
• Stateless: Each time the function is called on the

same data, get same result
• Example:
IntStream.range(1, 1000000) //Generate a stream of all ints 1 - 1m
.filter(x -> isPrime(x)) //Retain only values that pass some expensive isPrime
function
.forEach(System.out::println); //For each value returned by filter, print it

33

J. Bell GMU CS 475 Spring 2018

Sidebar: Lambdas
• I don't know if you have seen this before
IntStream.range(1, 1000000)
.filter(x -> isPrime(x))
.forEach(System.out::println);

• This line is called a lambda expression
• We should have shown it to you before, because it’s a core part of

Java syntax since Java 8 was released in 2014
• Effectively, think of this as shorthand for:
IntStream.range(1, 1000000)
.filter(new IntPredicate() {
 @Override
 public boolean test(int x) {
 return isPrime(x);
 }
})
.forEach(System.out::println);

• In fact, javac generates exactly the long-hand code for that
shorthand

34

J. Bell GMU CS 475 Spring 2018

Streams
IntStream.range(1, 1000000) //Generate a stream of all ints 1 - 1m
.filter(x -> isPrime(x)) //Retain only values that pass some expensive
isPrime function
.forEach(System.out::println); //For each value returned by filter, print
it

• Why use the stream interface instead of
for(int i = 1; i < 1000000; i++)
 if(isPrime(x))
 System.out.println(x);

• Who wants to write the parallel version of this?
IntStream.range(1, 1000000) //Generate a stream of all ints 1 - 1m
.filter(x -> isPrime(x)) //Retain only values that pass some expensive
isPrime function
.parallel() //Do the filtering in parallel
.forEach(System.out::println); //For each value returned by filter, print
it

• The magic works as long as isPrime is stateless!

35

J. Bell GMU CS 475 Spring 2018

Streams - what can’t be parallelized

• Interference
List<String> list = new ArrayList<>(Arrays.asList("Luke", "Leia", "Han"));
list.stream()
.peek(name -> {
 if (name.equals("Han")) {
 list.add("Chewie"); // Adds to list that we are peeking into
 }
})
.forEach(i -> {});

• Stateful
boolean tooBusy = false;
public void isPrime(int x)
{
 if(tooBusy)
 return false;//don't bother running if another thread set tooBusy
 else
 //do a sieve of erasthenes
}

• Side effects
List<Integer> list = new ArrayList<>(
Arrays.asList(1,3,5,7,9,11,13,15,17,19));
List<Integer> result = new ArrayList<>();
list.parallelStream()
.filter(x -> isPrime(x))
.forEach(x -> result.add(x)); //Changing external state, which may not (is not) thread safe

36

J. Bell GMU CS 475 Spring 2018

Streams under the hood
• Just adding more parallel() doesn't always make it

faster! (see: law of leaky abstractions)
• There is some overhead to how a parallel operation

occurs
• Internally, Java keeps a pool of worker threads

(rather than make new threads for each parallel
task)

• Streams use a special kind of pool, called a
ForkJoinPool

37

J. Bell GMU CS 475 Spring 2018

Fork/Join Programming
• Special kind of task - fork() defines how to create

subtasks, join() defines how to combine the results
• Similar to map/reduce, but not distributed
• For streams:

• Fork a task into subtasks for many threads to
work on

• Join the results together

38

J. Bell GMU CS 475 Spring 2018

Fork/Join Programming
• Obligatory array sum example

39

class Sum extends RecursiveTask<Long> {
 static final int SEQUENTIAL_THRESHOLD = 5000;

 int low;
 int high;
 int[] array;

 Sum(int[] arr, int lo, int hi) {
 array = arr;
 low = lo;
 high = hi;
 }

 protected Long compute() {
 if(high - low <= SEQUENTIAL_THRESHOLD) {
 long sum = 0;
 for(int i=low; i < high; ++i)
 sum += array[i];
 return sum;
 } else {
 int mid = low + (high - low) / 2;
 Sum left = new Sum(array, low, mid);
 Sum right = new Sum(array, mid, high);
 left.fork();
 long rightAns = right.compute();
 long leftAns = left.join();
 return leftAns + rightAns;
 }
 }

 static long sumArray(int[] array) {
 return ForkJoinPool.commonPool().invoke(new Sum(array,0,array.length));
 }
}

J. Bell GMU CS 475 Spring 2018

Promise
• What if we want to run some task, and do stuff

while we are waiting for it to be done?
• You COULD do it with a complicated combination

of synchronized, wait, and notify
• You can use the Promise abstraction instead

• Called a CompletableFuture in Java 8
CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 return "Result of the asynchronous computation";
});
// Block and get the result of the Future
String result = future.get();
System.out.println(result);

40

J. Bell GMU CS 475 Spring 2018

Promise Use-Cases
• Any case where you need to have multiple things

happen in the background, but care about the
result, and care about them happening in some
order

• Asynchronous I/O
• Read data from a web service
• Then process it
• Then save it to a file

41

J. Bell GMU CS 475 Spring 2018

Chaining Promises

42

Promise to get
some data

Promise to make
some changes to

that data

then

then

Report on those
changes to the

user

Report on the
error

If there’s an error…

If there’s an error…

Promise to make
some other changes

to that data

then

thenCombine

J. Bell GMU CS 475 Spring 2018

Promises
• Catch errors by providing a callback function for

exceptionally (called when an exception occurs in
any of those threads

• API: https://docs.oracle.com/javase/8/docs/api/
java/util/concurrent/CompletableFuture.html

43

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

