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Locking in Java
• Most locks are reentrant: if you hold it, and ask for it 

again, you don’t have to wait (because you already 
have it) 

• Basic primitives: 
• synchronized{}
• wait
• notify

• Plus… 
• Lock API… lock.lock(), lock.unlock()
• The preferred way
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Locking Granularity
• BIG design question in writing concurrent 

programs: how many locks should you have? 
• Example: Distributed filesystem 

• It would be correct to block all clients from 
reading any file, when one client writes a file 

• However, this would not be performant at all! 
• It would be much better to instead lock on 

individual files 
• More locks -> more complicated semantics and 

tricky to avoid deadlocks, races
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Designing Locking Strategies
• How we acquire and release locks can hugely 

impact performance 
• Two solutions might be correct, but one may waste 

more time by: 
• Acquiring and releasing unnecessary locks 
• Waiting for locks
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Dining Philosophers
• N philosophers seated around a 

circular table 
• One chopstick between each 

philosopher (N chopsticks) 
• A philosopher picks up both 

chopsticks next to him to eat 
• Philosophers may not pick up 

both chopsticks at the same 
time 

• How do they all eat without 
deadlocking or starving?
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Dining Philosophers
• Give each chopstick a lock 
• Is this enough? 
• Could deadlock! 
• Actual solutions: 

• Pick up one chopstick, wait for the 
other for N msec, otherwise put down 
what you have, wait, and try again 

• Only allow 4 philosophers to pick up 
chopsticks at once 

• Even # seats pick up right chopstick, 
odd # seats pick up left
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Announcements
• Reminder: HW2 is out 

• http://www.jonbell.net/gmu-cs-475-spring-2018/homework-2/ 
• Today: Different concurrent programming models and their 

impacts on performance 
• Cool, vaguely relevant podcasts: 

• Radiolab - Million Dollar Microsecond 
• Planet Money - BOTUS  

• Java Streams tutorial - http://winterbe.com/posts/
2014/07/31/java8-stream-tutorial-examples/ 

• Fork/Join tutorial - https://docs.oracle.com/javase/tutorial/
essential/concurrency/forkjoin.html
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Designing for Performance
• What factors can impact performance? 

• Limits imposed by physics 
• Limits imposed by technology 
• Limits imposed by economics 

• These limits can force us to make tradeoffs 
• Smaller chips are faster, but harder to dissipate 

heat 
• Need to serve X clients, can only spend Y on 

CPUs
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Performance Metrics
• Capacity 

• Consistent measure of a service’s size or amount of resources 
• Utilization 

• Percentage of that resource used for a workload 
• Overhead 

• Percentage of that utilization used for bookkeeping 
• Useful Work 

• Percentage of that utilization used for what we actually need to 
do 

• Latency 
• How long it takes an input to propagate through a system and 

generate an output 
• Throughput 

• Work done per time
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Resource Metrics - Example

• Say, capacity is measured in terms of processor 
cycles 

• Workload might be processing a single image 
• Utilization could 10% -> 90% of processor is unused 
• Overhead could go to the OS, perhaps 5% of the 

CPU going to OS bookkeeping 
• Useful work would then be 5%
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Latency
• In client/server model, latency is simply: time 

between client sending request and receiving 
response 

• What contributes to latency? 
• Latency sending the message 
• Latency processing the message 
• Latency sending the response 

• Adding pipelined components -> latency is 
cumulative

12

Camera
Image ServiceSends images

Processes images

Phase 1 Phase 210ns
5ns

5ns

10ns Total latency: 30ns



J. Bell GMU CS 475 Spring 2018

Throughput
• Measure of the rate of useful work done for a given 

workload 
• Example: 

• Throughput is camera frames processed/second 
• When adding multiple pipelined components -> 

throughput is the minimum value
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Designing for Performance
• Measure system to find which aspect of 

performance is lacking (throughput or latency) 
• Measure each component to identify bottleneck 
• Identify if fixing that bottleneck will realistically 

improve system performance 
• Measure improvement 
• Repeat
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Reducing Latency
• Often more challenging than increasing throughput 

• Examples: 
• Physical - Speed of light (network 

transmissions over long distances) 
• Algorithmic - Looking up an item in a hash 

table is limited by hash function 
• Economic - Adding more RAM gets expensive
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Latency & Stock Trading
• Buy low/sell high 
• Most of skill is in knowing what a stock will do 

before your competitors
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Latency & Stock Trading
• Algorithmic trading -> computer programs look at 

various factors, place trades automatically 
• Example: 

• President Trump tweets positively about a 
company -> price goes up 

• Write a script to check twitter for company 
mentions, immediately buy/sell stock 

• Get in and out before it hits CNN! 
• https://www.npr.org/sections/money/

2017/04/07/522897876/meet-botus-planet-
money-s-stock-trading-twitter-bot
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Latency & Stock Trading
• This only works if you can make your trades before 

other people find out 
• What if you set up this bot in Chicago, and I set 

one up in NYC? 
• I would beet you to it, every time.
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Latency & Stock Trading
• What is the speed of light? 

• ~300,000 km/sec 
• How fast does your CPU execute an instruction? 

• 0.33 nanoseconds (say, 3Ghz CPU) 
• How far does light travel in 1 CPU cycle? 

• 10 cm 
• How many instructions does your CPU execute in the time 

it takes light to travel from Chicago to NYC and back? 
• ~700 miles -> 7.4msec -> 22 million instructions 

• Being in NYC would let me execute 22 million instructions 
in the time it took you to send your stock order to NYC 
and get a response!
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Reducing Latency with $$$$
• People actually care a LOT about the latency 

between NYC and Chicago, because commodities 
are traded in Chicago and stocks are traded in 
NYC 
• Changes to commodities prices (e.g. ethanol) 

can dramatically impact price of some stocks
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Reducing Latency with $$$$
• It’s not quite as simple as 700 miles -> 7.4msec 
• There are streams, mountains, etc… more like 

1,000 miles 
• Light is refracted in a fiber optic cable is ~31% 

slower 
• What do we do if money is no object?
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Reducing Latency with Billions of Dollars
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Reducing Latency for Mortals
• Instead of fighting nature, look closer at the 

structure of the problem 
• Normal trick is to exploit workload properties to 

reduce latency, instead
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Reducing Latency
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Reducing Latency
• Approach: Optimize for the common case (aka 

fast path and slow path)
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Reducing Latency
• Approach: use concurrency
• Limited by serial section
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Reducing Latency
• Approach: Use better technology
• However, processors are limited by heat dissipation 
• Waiting for processors to get faster is not a great approach these 

days 
• Instead: move computation from resource constrained devices to 

cloud

27

Wait for better CPUs 
worked better before 

2005



J. Bell GMU CS 475 Spring 2018

Improving Throughput
• Might be able to hide latency by overlapping many 

requests (increase throughput) 
• Example: Want to make client/server application 

appear faster 
• But, client on east coast communicates with west 

coast (20msec) 
• In 20msec, a processor can execute millions of 

instructions 
• Instead: batch lots of requests into a single 

message, have more processing on client side
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Improving Throughput
• Introduce concurrency into our pipeline 
• Each stage runs in its own thread (or many 

threads, perhaps) 
• If a stage completes its task, it can start 

processing the next request right away 
• E.g. our system will process multiple requests at 

the same time
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Improving Throughput
• Can also introduce concurrency to stages 
• If one stage is a bottleneck, can we add more 

copies of it?
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Queueing and Overload
• What happens when a slow component gets overloaded? 
• Need to place a bounded buffer in between components! 

• When buffer becomes full, it prevents new requests 
from being accepted
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Asynchronous Programming
• AKA event-driven programming 
• A paradigm that lends itself well to scaling, 

especially in a multi-stage systems (like the 
example with Facebook) 

• Allows us to think about what is done, abstract 
away how it is done 

• We will discuss two asynchronous models: 
streams, and Promises, neither of which make 
you think about threads (or locks?)
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Streams
• Java 8 introduced the concept of Streams
• A stream is a sequence of objects 
• Streams have functions that you can perform on them, 

which are (mostly) non-interfering and stateless
• Non-interfering: Does not modify the actual stream 
• Stateless: Each time the function is called on the 

same data, get same result 
• Example: 
IntStream.range(1, 1000000) //Generate a stream of all ints 1 - 1m
.filter(x -> isPrime(x)) //Retain only values that pass some expensive isPrime 
function
.forEach(System.out::println); //For each value returned by filter, print it
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Sidebar: Lambdas
• I don't know if you have seen this before 
IntStream.range(1, 1000000) 
.filter(x -> isPrime(x))
.forEach(System.out::println); 

• This line is called a lambda expression 
• We should have shown it to you before, because it’s a core part of 

Java syntax since Java 8 was released in 2014 
• Effectively, think of this as shorthand for: 
IntStream.range(1, 1000000)
.filter(new IntPredicate() {
    @Override
    public boolean test(int x) {
        return isPrime(x);
    }
})
.forEach(System.out::println); 

• In fact, javac generates exactly the long-hand code for that 
shorthand
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Streams
IntStream.range(1, 1000000) //Generate a stream of all ints 1 - 1m
.filter(x -> isPrime(x)) //Retain only values that pass some expensive 
isPrime function
.forEach(System.out::println); //For each value returned by filter, print 
it 

• Why use the stream interface instead of  
for(int i = 1; i < 1000000; i++)
    if(isPrime(x))
        System.out.println(x); 

• Who wants to write the parallel version of this? 
IntStream.range(1, 1000000) //Generate a stream of all ints 1 - 1m
.filter(x -> isPrime(x)) //Retain only values that pass some expensive 
isPrime function
.parallel() //Do the filtering in parallel
.forEach(System.out::println); //For each value returned by filter, print 
it 

• The magic works as long as isPrime is stateless!
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Streams - what can’t be parallelized

• Interference 
List<String> list = new ArrayList<>(Arrays.asList("Luke", "Leia", "Han"));
list.stream()
.peek(name -> {
    if (name.equals("Han")) {
        list.add("Chewie"); // Adds to list that we are peeking into
    }
})
.forEach(i -> {}); 

• Stateful 
boolean tooBusy = false;
public void isPrime(int x)
{
    if(tooBusy)
        return false;//don't bother running if another thread set tooBusy
    else
        //do a sieve of erasthenes
} 

• Side effects 
List<Integer> list = new ArrayList<>(
Arrays.asList(1,3,5,7,9,11,13,15,17,19));
List<Integer> result = new ArrayList<>();
list.parallelStream()
.filter(x -> isPrime(x))
.forEach(x -> result.add(x)); //Changing external state, which may not (is not) thread safe
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Streams under the hood
• Just adding more parallel() doesn't always make it 

faster! (see: law of leaky abstractions) 
• There is some overhead to how a parallel operation 

occurs 
• Internally, Java keeps a pool of worker threads 

(rather than make new threads for each parallel 
task) 

• Streams use a special kind of pool, called a 
ForkJoinPool
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Fork/Join Programming
• Special kind of task - fork() defines how to create 

subtasks, join() defines how to combine the results 
• Similar to map/reduce, but not distributed 
• For streams: 

• Fork a task into subtasks for many threads to 
work on 

• Join the results together
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Fork/Join Programming
• Obligatory array sum example

39

class Sum extends RecursiveTask<Long> {
    static final int SEQUENTIAL_THRESHOLD = 5000;
    
    int low;
    int high;
    int[] array;
    
    Sum(int[] arr, int lo, int hi) {
        array = arr;
        low   = lo;
        high  = hi;
    }
    
    protected Long compute() {
        if(high - low <= SEQUENTIAL_THRESHOLD) {
            long sum = 0;
            for(int i=low; i < high; ++i)
                sum += array[i];
            return sum;
        } else {
            int mid = low + (high - low) / 2;
            Sum left  = new Sum(array, low, mid);
            Sum right = new Sum(array, mid, high);
            left.fork();
            long rightAns = right.compute();
            long leftAns  = left.join();
            return leftAns + rightAns;
        }
    }
    
    static long sumArray(int[] array) {
        return ForkJoinPool.commonPool().invoke(new Sum(array,0,array.length));
    }
}
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Promise
• What if we want to run some task, and do stuff 

while we are waiting for it to be done? 
• You COULD do it with a complicated combination 

of synchronized, wait, and notify
• You can use the Promise abstraction instead 

• Called a CompletableFuture in Java 8 
CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
    try {
        TimeUnit.SECONDS.sleep(1);
    } catch (InterruptedException e) {
        throw new IllegalStateException(e);
    }
    return "Result of the asynchronous computation";
});
// Block and get the result of the Future
String result = future.get();
System.out.println(result);
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Promise Use-Cases
• Any case where you need to have multiple things 

happen in the background, but care about the 
result, and care about them happening in some 
order 

• Asynchronous I/O 
• Read data from a web service 
• Then process it 
• Then save it to a file
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Chaining Promises
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Promises
• Catch errors by providing a callback function for 

exceptionally (called when an exception occurs in 
any of those threads 

• API: https://docs.oracle.com/javase/8/docs/api/
java/util/concurrent/CompletableFuture.html
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