Transactions

CS 475, Spring 2018
Concurrent & Distributed Systems

IIIIIIIIII

J. Bell

Review: Transactions

boolean transferMoney(Person from, Person
to, float amount){
if(from.balance >= amount)

{
from.balance = from.balance -
amount;
to.balance = to.balance + amount;
return true;
s

return false:

Assume running on a single machine;:
What can go wrong here?

GMU CS 475 Spring 2018

Review: Properties of Transactions

» Traditional properties: ACID
Atomicity: transactions are “all or nothing”

Consistency: Guarantee some basic properties of
data; each transaction leaves the database in a valid
state

Isolation: Each transaction runs as if it is the only one;
there is some valid serial ordering that represents what
happens when transactions run concurrently

Durability: Once committed, updates cannot be lost
despite tailures

J. Bell GMU CS 475 Spring 2018

Review: 2PC

Coordinator Participant Participant
(client or 3rd party) Goliath National Duke & Duke

transaction
.commit()

%’

—

If we can commit, then lock
our customer, vote “yes”

O

It everyone can commit, then \

outcome == commit, else
abort

Review: Recovery on Reboot

e |f coordinator finds no “commit” message on disk,
abort

e |f coordinator finds “commit” message, commit
o |f participant finds no “yes, ok” message, abort

e |f participant finds “yes, ok™ message, then replay
that message and continue protocol

J. Bell GMU CS 475 Spring 2018

Announcements

* HW4 is out!
* http://www.jonbell.net/gmu-cs-475-spring-2018/homework-4/
* Today:

* Agreement & transactions in distributed systems (continued)
* Reminder: lecture from last week is posted on YouTube
* Additional readings:

 http://the-paper-trail.org/blog/consensus-protocols-two-
phase-commit/

» http://the-paper-trail.org/blog/consensus-protocols-three-
phase-commit/

 Tannenbaum Note 8.13 (“Advanced”!)

J. Bell GMU CS 475 Spring 2018

http://www.jonbell.net/gmu-cs-475-spring-2018/homework-4/
http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/
http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/
http://the-paper-trail.org/blog/consensus-protocols-three-phase-commit/
http://the-paper-trail.org/blog/consensus-protocols-three-phase-commit/

Timeouts in 2PC

 Example:

o (Coordinator times out waiting for Goliath National
Bank’s response

* Bank times out waiting for coordinator’'s outcome
message

e (Causes”?
e Network

 (Overloaded hosts
 Both are very realistic...

J. Bell GMU CS 475 Spring 2018

J. Bell

Coordinator Timeouts

* |f coordinator times out waiting to hear from a bank

Coordinator hasn’t sent any commit messages
yet

Can safely abort - send abort message

Preserves correctness, sacrifices performance
(maybe didn’t need to abort!)

It either bank decided to commit, it's fine - they
will eventually abort

GMU CS 475 Spring 2018

Handling Bank Timeouts

« \What if the bank doesn’t hear back from
coordinator?

e |f bank voted “no”, it's OK to abort
e |f bank voted “yes”

* |t can’t decide to abort (maybe both banks voted
‘ves” and coordinator heard this)

* [t can't decide to commit (maybe other bank
voted yes)

 Does bank just wait for ever?

J. Bell GMU CS 475 Spring 2018

J. Bell

Handling Bank Timeouts

Can resolve SOME timeout problems with
guaranteed correctness in event bank voted “yes”
to commit

Bank asks other bank for status (if it heard from
coordinator)

It other bank heard “commit” or “abort” then do
that

If other bank didn’t hear
e put other voted "no”: both banks abort
e put other voted "yes™: no decision possible!

GMU CS 475 Spring 2018

10

2PC Timeouts

 We can solve a lot (but not all of the cases) by
naving the participants talk to each other

e But, If coordinator fails, there are cases where
everyone stalls until it recovers

 (Can the coordinator fail?... yes

 Hence, 2PC does not guarantee liveness: a single
node failing can cause the entire set to fail

J. Bell GMU CS 475 Spring 2018

2PC Exercise

Coordinator Participant

(client or 3rd party)

Exercise round 1:
W 1 Coordinator, 4 participants

No failures, all commit
T ——tcome

Participants

Coord A B C

2PC Exercise

Coordinator Participant

(client or 3rd party)

pr
e Exercise round 2:
W 1 Coordinator, 4 participants

Coordinator tails before providing
T Utcome

outcome

Participants
Coord A B C D

2PC Exercise

Coordinator Participant

(client or 3rd party)

% Exercise round 3:

1 Coordinator, 4 participants

onseE , |
M Coordinator provides outcome to

1 participant, then coordinator

———outcone and that participant fail

Participants
Coord A B C D

3 Phase Commit

» Goal: Eliminate this specific failure from blocking
iveness

Voted yes
Heard back “commit”

Voted yes

BEDICSE Did not hear result

Coor nator

Voted yes
Did not hear result

Participant C

Voted yes

FEILIS e E Did not hear result

3. Bell GMU CS 475 Spring 2018 15

J. Bell

3 Phase Commit

* (Goal: Avoid blocking on node failure
e How?
* Think about how 2PC is better than 1PC

* 1PC means you can never change your mind or have a
failure after committing

e 2PC still means that you can’t have a tailure after
committing (committing is irreversible)

* 3PC idea:
o Split commit/abort into 2 sub-phases
 1: Tell everyone the outcome
* 2: Agree on outcome

* Now: EVERY participant knows what the result will be
before they irrevocably commit!

GMU CS 475 Spring 2018

16

3PC Example

Coordinator Participants (A,B,C,D)

Soliciting %»
_voles . Status: Uncertain
Tlmemét ctauses W Timeout causes abort
abor

authorized oK Status: Prepared to commit
| (if all yes) ‘/comn:/ Timeout causes commit
fimeout causes \ Status: Committed
abort y

Done

\4 v

J. Bell GMU CS 475 Spring 2018 17

S [o}
3PC E)1 1Coordina?oer?jrg)articipants

No failures, all commit
Coordinator Participants (A;ws s - —_—

Soliciting %.
_votes . Status: Uncertain
T'meO‘l‘; cf“W Timeout causes abort
abor

authorized Status: Prepared to commit
. y Timeout causes commit
_(/f all yes) Commi+
Timeout causN Status: Committed
abort y

Done

v v

Participants
Coord A B C D

3PC Crash Handling

e Can B/C/D reach a safe decision...

* |f any one of them has received
preCommit? Coor nator

e YES! Assume A is dead. When A comes

back online, it will recover, and talk to B/
C/D to catch up.

 Consider equivalent to in 2PC where B/
C/D received the “commit” message
and all voted yes

Participant B

Participant C

Participant D

J. Bell GMU CS 475 Spring 2018 19

3PC Crash Handling

« Can B/C/D reach a safe decision...
* |[f NONE of them has received preCommit?

e YES! It is safe to abort, because A can
not have committed (because it couldn'
commit until B/C/D receive and
acknowledge the pre-commit)

* This is the big strength of the extra
phase over 2PC

Coor nator

Participant B

¢ Summary: Any node can crash at any time, ENiEae
and we can always safely abort or commit.

Participant D

J. Bell GMU CS 475 Spring 2018

p Scenario:
\ 1 Coordinator, 4 participants
After pre-commit sent, coordinator and A fall

Coordinator Participants (A,B,C,D)

Soliciting W
_ voles . Status: Uncertain
T'meO‘l‘: cf“W Timeout causes abort
abor

authorized Status: Prepared to commit
. y Timeout causes commit
_(/f all yes) Commi
Timeout causN Status: Committed
abort ‘M

Done

v v

3PC Timeout Handling

Coordinator Participants (A,B,C,D)

Soliciting %»
____voles . Status: Uncertain
T'meO‘l‘: ctauses W Timeout causes abort
abor

Commit %
authorized Status: Prepared to commit
. y Timeout causes commit
| (if all yes) Commi s
Timeout causes \.Status: Committed
abort y

Done

\4 v

J. Bell GMU CS 475 Spring 2018 22

3PC Exercise

Exercise round 2:

Coordinator Pal 1 Coordinator, 4 participants
Coordinator sends pre-commit
Soliciting |————Prepar message then fails
votes ——

FOTAtUsS. Urieer idint

Timeout cayses,cpons< Timeout causes abort
abort
. Pre-comm;
Commit w’

authorized Status: Prepared to commit
) y Timeout causes commit
_(/f all yes) Commi
Timeout causN Status: Committed
abort y

Done

v v

J. Bell

Agreement

n distributed systems, we have multiple nodes that
need to all agree that some object has some state

-xamples:
e \Who owns a lock

e \Whether or not to commit a transaction
e The value of afile

GMU CS 475 Spring 2018

24

J. Bell

Agreement Generally

Most distributed systems problems can be reduced to
this one:

* Despite being separate nodes (with potentially
different views of their data and the world)...

o All nodes that store the same object O must apply all
updates to that object in the same order (consistency)

e All nodes involved In a transaction must either commit
or abort their part of the transaction (atomicity)

Easy?
... but nodes can restart, die or be arbitrarily slow
e ... and networks can be slow or unreliable too

GMU CS 475 Spring 2018 25

Properties of Agreement

» Safety (correctness)

* All nodes agree on the same value (which was
proposed by some node)

* Liveness (fault tolerance, availability)

e [fless than N nodes crash, the rest should still
be OK

J. Bell GMU CS 475 Spring 2018

J. Bell

Does 3PC guarantee agreement?

 Reminder, that means:
* Liveness (availability)
* Yes! Always terminates based on timeouts
o Safety (correctness)
e HmMmM...

GMU CS 475 Spring 2018

27

Partitions

eeeicliEicl® GomomighMbteszed

Prepared to commit etwork Partition!!!

\
-

.-.-.," S
o\ P e = . - - 5 - s

-4 ® —
R Y. (@ &) 2T o~ =
. wale L DB e . -<g - -
oy It Py
Vi< - - . i
. -
" .

Yes Yes Yes Yes
]
Oaouniiadl UAberted Uheerterh UAbetad

Timeout behavior: Timeout behavior: abort
Commit!

J. el GMU CS 475 Spring 2018

- o '
- ~xtu Al

28

3PC Exercise

Scenario:
1 Coordinator, 4 participants
Coordinator sends pre-commit message ONLY to
A, then Coordinator fails, A partitioned

Soliciting W
_ VoIes . Status: Uncertain
Timeout cauW Timeout causes abort
abort
authorized Status: Prepared to commit
. y Timeout causes commit
(if all yes)

_ commi+
Timeout CaUSN, Status: Committed

Coordinator Pal

abort oK __—
Participants
Coord A B C D

Can we fix it?

 Short answer: No.

* Fischer, Lynch & Paterson (FLP) Impossibility
Result:

 Assume that nodes can only fail by crashing,
network is reliable but can be delayed arbitrarily

 Then, there can not be a deterministic algorithm
for the consensus problem subject to these
failures

J. Bell GMU CS 475 Spring 2018

30

J. Bell

FLP - Intuition

Why can’'t we make a protocol for consensus/
agreement that can tolerate both partitions and
node failures”

To tolerate a partition, you need to assume that
eventually the partition will heal, and the network
will deliver the delayed packages

But the messages might be delayed forever

H
U

ence, your protocol would not come to a result,
ntil forever (it would not have the liveness

P

roperty)

GMU CS 475 Spring 2018

31

Partitions

Insight: There is a “majority” partition here (B,C,D) |
The “minority” know that they are not in the majority (A can f
only talk to Coordinator, knows B, C, D might exist) |

Prepared to commit i\letwork Partltlon'”

RIS <

Canwe let B, C, D proceed safely while stalling A and D?

Yes f* Yes Yes Yes

Caswniiadl UAberted UNeertesh UABSItSE
Timeout behavior: Timeout behavior: abort

Commit!

GMU CS 475 Spring 2018 32

J. Bell

Partition Tolerance

Key idea: it you always have an odd number of
nodes...

There will always be a minority partition and a
majority partition

Give up processing in the minority until partition
neals and network resumes

Majority can continue processing

GMU CS 475 Spring 2018

33

J. Bell

Partition Tolerant Consensus Algorithms

e Decisions made by majority
e Jypically a fixed coordinator (leader) during a time period

(epoch)

 How does the leader change”

 Assume it starts out as an arbitrary node
e [he leader sends a heartbeat

* |f you haven't heard from the leader, then you challenge it
by advancing to the next epoch and try to elect a new one

* |f you don't get a majority of votes, you don't get to be
leader

* ...hence no leader in a minority partition

GMU CS 475 Spring 2018 34

In Search of an |

Abstract

Raftis a consansus algocithm for man
log. It produces a result equivalent to (1
it i ag eficient as Paxos, but its struy
from Paxos; this makes Raft more ung
Paxos and also provides a better foun
ing practical systems. [n order to enhang
ity, Raft separates the key elements of ¢f
leader slection. log replication, and safel
stronger cegree o cohemency o mecid
states thut misst be considened. Resuks |
demonstrate thet Ruft is easier (oo stud
Pacos. Raft abso includes 4 new mechan
the clister membership. which uses ow
ties 0 guarzmies sufely

I Introduction

Consensus elgonithms allow o colleg
to work as a cokerent group that can
urcs cf some ol i3 members, Because of
key role in building raliable large scala s
Paxos |13, 18] has dommnated the discy
sus algonthme over the last cecade: most
of consensus are based on Faxos or mHl|
Paxos has become the pnmary vamcle |
denis aboul CON2NSUS.

Unforunately, Paxos is quite difficult
spit2 o7 numerous awemaes 1o maxe it md
Furthermore. its archiiecwre requires ¢
1 supoert practical svslems. As a re§
bullders anc students struggle with Paxg

Afer srrugpling with Paxes ourselw
find 2 n2w consensus algorithm thar 2oy
ter fournlzion for systen boilding and el

‘ -
TITEAIT D 2T 1217 1M :lI m l} al 1T TITINIIME Y

Partition Tolerant
onsensus Algorithms

ZooKeeper: Wait-free coordination for Internet-scale systems

Fatrick Hunt and Mahadev Konar
Yahoo! Grid
[phunt,naradev}dyanoo-Linc. con

Abstract

In this paper, we describe ZooKeeper, 3 service for co-
ordimating processes of distributed opolicaticns, Since
ZooKeeper is part of critical rfrasiucture, ZooKeeper
anws W provdke 2 simplz and high performance kermel
for building more corplex cocrdina:ion primizives &t the
chient. [t incorporztes eleTents frm group messaging,
shared reqisters, end diitributed lock services in a repoi.
cated, centrzlized eervice. The interface expeead by Zoo-
Keeper nas the wait free aspects of shored registers with
an cveat-dnven mechangsm similar to cache inval:cations
of distribated filz systems to provide a simple, ye: pow-
il coordinztion service,

The ZocKeeper interface erahles 2 high-per‘ormance
service implementation. v additwon tc the wait-free
property, ZocKeeper provides 2 per chient guaruntee of
FIFO execution of recuests and Lrearizabi'ily forall re
quests that change the ZooKceoper stote. These design de-
csions enable the implementation of a 2 gh perrarmance
processig pipeline with read regussts being salisficd by
Iocal servers. We show for Te target workloads, 2|
tn XX read tn wnite rahn, that ZooKeeper ean hardle
tens to hundreds of thousands of trarsactions per second.
This pecformance allows ZooKesper 10 He used exlen-
sively by clisnt apglications,

Flevio P. Junqueira and Berjamin Reed
Yzkoo! Research
{1p1,breed}gsanoco~-irc.ccm

that implement mutaally ecclusive access to critical
sources.

One¢ approach to coordinatior is ¢ develop serv!
for cach of the different ccordination nzeds, For ex
pie. Amacon Simgle Queue Savice [3] focuses spe
xally on gueaing Othes services have bees de
apedd specifeally for leader eleciion [29] and config
tion [27] Services that implement maore pawesful pr
itives can be used to mplement less poaecful ones,
exampls, Chubby [5] is a locking service with str
synchrorization guarantees. Locks can then ke wse
implement |cader cleeton, group membership, cte.

When designing our coordinatipn service, we mo
away from imyementing pecifiic pamitves ne
server side, and instead we cptec ‘or exposing an
that enablas applicston developers to implement ¢
own promitives. Such # choice led to the impleme
tion of a cooraination kernel that enablcs new primit
wilwel requining chames w the servike core, This
proach enzbles muleple forms of coordination adapie
the requirements of applications, mskead of condrair
develcpers 1o a hixed set of primibives.

cn designing the API of ZooKesper. we mo
away “rom dlocsing primitives, such as locks, Dlocl
primstives for a codinalion scivice can cause. any
oth*r nrobtlems. sloa o Facliy clients to imnast

J. Bell

Paxos: High Level

One (or more) nodes decide to be leader
(proposer)

_eader proposes a value, solicits acceptance from
the rest of the nodes

_eader announces chosen value, or tries again if it
failled to get all nodes to agree on that value

_ots of tricky corners (failure handling)

N sum: requires only a majority of the (non-leader)
nodes to accept a proposal for it to succeed

GMU CS 475 Spring 2018

36

Paxos: Implementation Details

Just kidding!

GMU CS 475 Spring 2018

37

Z0ooKeeper

* Distributed coordination service from Yahoo!
originally, now maintained as Apache project, used
widely (key component of Hadoop etc)

 Highly available, tfaul

* Designed so that YO
Paxos for:

t tolerant, per

‘ormant

J don't have

0 Implement

 Maintaining group membership, distributed data
structures, distributed locks, distributed protocol

state, elc

J. Bell GMU CS 475 Spring 2018

38

J. Bell

Z0o0Keeper - Guarantees

* Liveness guarantees: if a majority of ZooKeeper
servers are active and communicating the service
will be available

 Durability guarantees: if the ZooKeeper service
responds successfully to a change request, that
change persists across any number of failures as
long as a quorum of servers is eventually able to
recover

GMU CS 475 Spring 2018

39

