
Transactions
CS 475, Spring 2018

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2018

Review: Transactions
boolean transferMoney(Person from, Person
to, float amount){
 if(from.balance >= amount)
 {
 from.balance = from.balance -
amount;
 to.balance = to.balance + amount;
 return true;
 }
 return false;
}

2

Assume running on a single machine:
What can go wrong here?

J. Bell GMU CS 475 Spring 2018

Review: Properties of Transactions

• Traditional properties: ACID
• Atomicity: transactions are “all or nothing”
• Consistency: Guarantee some basic properties of

data; each transaction leaves the database in a valid
state

• Isolation: Each transaction runs as if it is the only one;
there is some valid serial ordering that represents what
happens when transactions run concurrently

• Durability: Once committed, updates cannot be lost
despite failures

3

Review: 2PC
Coordinator

(client or 3rd party)
Participant

Goliath National
Participant

Duke & Duke
transaction
.commit() prepare

prepare
respon

seGNB

responseD&D If we can commit, then lock
our customer, vote “yes”outcome

outcome
If everyone can commit, then

outcome == commit, else
abort

J. Bell GMU CS 475 Spring 2018

Review: Recovery on Reboot
• If coordinator finds no “commit” message on disk,

abort
• If coordinator finds “commit” message, commit
• If participant finds no “yes, ok” message, abort
• If participant finds “yes, ok” message, then replay

that message and continue protocol

5

J. Bell GMU CS 475 Spring 2018

Announcements
• HW4 is out!

• http://www.jonbell.net/gmu-cs-475-spring-2018/homework-4/
• Today:

• Agreement & transactions in distributed systems (continued)
• Reminder: lecture from last week is posted on YouTube

• Additional readings:
• http://the-paper-trail.org/blog/consensus-protocols-two-

phase-commit/
• http://the-paper-trail.org/blog/consensus-protocols-three-

phase-commit/
• Tannenbaum Note 8.13 (“Advanced”!)

6

http://www.jonbell.net/gmu-cs-475-spring-2018/homework-4/
http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/
http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/
http://the-paper-trail.org/blog/consensus-protocols-three-phase-commit/
http://the-paper-trail.org/blog/consensus-protocols-three-phase-commit/

J. Bell GMU CS 475 Spring 2018

Timeouts in 2PC
• Example:

• Coordinator times out waiting for Goliath National
Bank’s response

• Bank times out waiting for coordinator’s outcome
message

• Causes?
• Network
• Overloaded hosts
• Both are very realistic…

7

J. Bell GMU CS 475 Spring 2018

Coordinator Timeouts
• If coordinator times out waiting to hear from a bank

• Coordinator hasn’t sent any commit messages
yet

• Can safely abort - send abort message
• Preserves correctness, sacrifices performance

(maybe didn’t need to abort!)
• If either bank decided to commit, it’s fine - they

will eventually abort

8

J. Bell GMU CS 475 Spring 2018

Handling Bank Timeouts
• What if the bank doesn’t hear back from

coordinator?
• If bank voted “no”, it’s OK to abort
• If bank voted “yes”

• It can’t decide to abort (maybe both banks voted
“yes” and coordinator heard this)

• It can’t decide to commit (maybe other bank
voted yes)

• Does bank just wait for ever?

9

J. Bell GMU CS 475 Spring 2018

Handling Bank Timeouts
• Can resolve SOME timeout problems with

guaranteed correctness in event bank voted “yes”
to commit

• Bank asks other bank for status (if it heard from
coordinator)

• If other bank heard “commit” or “abort” then do
that

• If other bank didn’t hear
• but other voted “no”: both banks abort
• but other voted “yes”: no decision possible!

10

J. Bell GMU CS 475 Spring 2018

2PC Timeouts
• We can solve a lot (but not all of the cases) by

having the participants talk to each other
• But, if coordinator fails, there are cases where

everyone stalls until it recovers
• Can the coordinator fail?… yes
• Hence, 2PC does not guarantee liveness: a single

node failing can cause the entire set to fail

11

2PC Exercise
Coordinator

(client or 3rd party) Participant

prepare

respon
se

outcome

Exercise round 1:
1 Coordinator, 4 participants

No failures, all commit

Coord
Participants

A B C D

2PC Exercise
Coordinator

(client or 3rd party) Participant

prepare

respon
se

outcome

Exercise round 2:
1 Coordinator, 4 participants

Coordinator fails before providing
outcome

Coord
Participants

A B C D

2PC Exercise
Coordinator

(client or 3rd party) Participant

prepare

respon
se

outcome

Exercise round 3:
1 Coordinator, 4 participants

Coordinator provides outcome to
1 participant, then coordinator

and that participant fail

Coord
Participants

A B C D

J. Bell GMU CS 475 Spring 2018

3 Phase Commit
• Goal: Eliminate this specific failure from blocking

liveness

15

Coordinator

Participant A

Participant B

Participant C

Participant D

Voted yes

Voted yesX
X Heard back “commit”

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

J. Bell GMU CS 475 Spring 2018

3 Phase Commit
• Goal: Avoid blocking on node failure
• How?

• Think about how 2PC is better than 1PC
• 1PC means you can never change your mind or have a

failure after committing
• 2PC still means that you can’t have a failure after

committing (committing is irreversible)
• 3PC idea:

• Split commit/abort into 2 sub-phases
• 1: Tell everyone the outcome
• 2: Agree on outcome

• Now: EVERY participant knows what the result will be
before they irrevocably commit!

16

J. Bell GMU CS 475 Spring 2018

3PC Example

17

Coordinator Participants (A,B,C,D)

Soliciting
votes

prepare

respon
se

pre-commitCommit
authorized
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Timeout causes abortTimeout causes
abort

Timeout causes
abort

Timeout causes commit

3PC Exercise
Coordinator Participants (A,B,C,D)

Soliciting
votes

prepare

respon
se

pre-commitCommit
authorized
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Scenario:
1 Coordinator, 4 participants

No failures, all commit

Timeout causes abortTimeout causes
abort

Timeout causes
abort

Timeout causes commit

Coord
Participants

A B C D

J. Bell GMU CS 475 Spring 2018

3PC Crash Handling
• Can B/C/D reach a safe decision…

• If any one of them has received
preCommit?
• YES! Assume A is dead. When A comes

back online, it will recover, and talk to B/
C/D to catch up.

• Consider equivalent to in 2PC where B/
C/D received the “commit” message
and all voted yes

19

Participant B

Participant C

Participant D

CoordinatorX
Participant AX

J. Bell GMU CS 475 Spring 2018

3PC Crash Handling
• Can B/C/D reach a safe decision…

• If NONE of them has received preCommit?
• YES! It is safe to abort, because A can

not have committed (because it couldn’t
commit until B/C/D receive and
acknowledge the pre-commit)

• This is the big strength of the extra
phase over 2PC

• Summary: Any node can crash at any time,
and we can always safely abort or commit.

20

Participant B

Participant C

Participant D

CoordinatorX
Participant AX

3PC Exercise
Coordinator Participants (A,B,C,D)

Soliciting
votes

prepare

respon
se

pre-commitCommit
authorized
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Scenario:
1 Coordinator, 4 participants

After pre-commit sent, coordinator and A fail

Timeout causes abortTimeout causes
abort

Timeout causes
abort

Timeout causes commit

J. Bell GMU CS 475 Spring 2018

3PC Timeout Handling

22

Coordinator Participants (A,B,C,D)

Soliciting
votes

prepare

respon
se

pre-commitCommit
authorized
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Timeout causes abortTimeout causes
abort

Timeout causes
abort

Timeout causes commit

3PC Exercise
Coordinator Participants (A,B,C,D)

Soliciting
votes

prepare

respon
se

pre-commitCommit
authorized
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Exercise round 2:
1 Coordinator, 4 participants

Coordinator sends pre-commit
message then fails

Timeout causes abortTimeout causes
abort

Timeout causes
abort

Timeout causes commit

J. Bell GMU CS 475 Spring 2018

Agreement
• In distributed systems, we have multiple nodes that

need to all agree that some object has some state
• Examples:

• Who owns a lock
• Whether or not to commit a transaction
• The value of a file

24

J. Bell GMU CS 475 Spring 2018

Agreement Generally
• Most distributed systems problems can be reduced to

this one:
• Despite being separate nodes (with potentially

different views of their data and the world)…
• All nodes that store the same object O must apply all

updates to that object in the same order (consistency)
• All nodes involved in a transaction must either commit

or abort their part of the transaction (atomicity)
• Easy?

• … but nodes can restart, die or be arbitrarily slow
• … and networks can be slow or unreliable too

25

J. Bell GMU CS 475 Spring 2018

Properties of Agreement
• Safety (correctness)

• All nodes agree on the same value (which was
proposed by some node)

• Liveness (fault tolerance, availability)
• If less than N nodes crash, the rest should still

be OK

26

J. Bell GMU CS 475 Spring 2018

Does 3PC guarantee agreement?

• Reminder, that means:
• Liveness (availability)

• Yes! Always terminates based on timeouts
• Safety (correctness)

• Hmm…

27

J. Bell GMU CS 475 Spring 2018

Partitions

28

Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Network Partition!!!Prepared to commitPrepared to commitPrepared to commit

Timeout behavior: abortTimeout behavior:
Commit!

Commit Authorized

Committed Aborted Aborted Aborted

3PC Exercise
Coordinator Participants (A,B,C,D)

Soliciting
votes

prepare

respon
se

pre-commitCommit
authorized
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Scenario:
1 Coordinator, 4 participants

Coordinator sends pre-commit message ONLY to
A, then Coordinator fails, A partitioned

Timeout causes abortTimeout causes
abort

Timeout causes
abort

Timeout causes commit

Coord
Participants

A B C D

J. Bell GMU CS 475 Spring 2018

Can we fix it?
• Short answer: No.
• Fischer, Lynch & Paterson (FLP) Impossibility

Result:
• Assume that nodes can only fail by crashing,

network is reliable but can be delayed arbitrarily
• Then, there can not be a deterministic algorithm

for the consensus problem subject to these
failures

30

J. Bell GMU CS 475 Spring 2018

FLP - Intuition
• Why can’t we make a protocol for consensus/

agreement that can tolerate both partitions and
node failures?

• To tolerate a partition, you need to assume that
eventually the partition will heal, and the network
will deliver the delayed packages

• But the messages might be delayed forever
• Hence, your protocol would not come to a result,

until forever (it would not have the liveness
property)

31

J. Bell GMU CS 475 Spring 2018

Partitions

32

Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Network Partition!!!Prepared to commitPrepared to commitPrepared to commit

Timeout behavior: abortTimeout behavior:
Commit!

Commit Authorized

Committed Aborted Aborted Aborted

Insight: There is a “majority” partition here (B,C,D)
The “minority” know that they are not in the majority (A can

only talk to Coordinator, knows B, C, D might exist)

Can we let B, C, D proceed safely while stalling A and D?

J. Bell GMU CS 475 Spring 2018

Partition Tolerance
• Key idea: if you always have an odd number of

nodes…
• There will always be a minority partition and a

majority partition
• Give up processing in the minority until partition

heals and network resumes
• Majority can continue processing

33

J. Bell GMU CS 475 Spring 2018

Partition Tolerant Consensus Algorithms

• Decisions made by majority
• Typically a fixed coordinator (leader) during a time period

(epoch)
• How does the leader change?

• Assume it starts out as an arbitrary node
• The leader sends a heartbeat
• If you haven’t heard from the leader, then you challenge it

by advancing to the next epoch and try to elect a new one
• If you don’t get a majority of votes, you don’t get to be

leader
• …hence no leader in a minority partition

34

Partition Tolerant
Consensus Algorithms

J. Bell GMU CS 475 Spring 2018

Paxos: High Level
• One (or more) nodes decide to be leader

(proposer)
• Leader proposes a value, solicits acceptance from

the rest of the nodes
• Leader announces chosen value, or tries again if it

failed to get all nodes to agree on that value
• Lots of tricky corners (failure handling)
• In sum: requires only a majority of the (non-leader)

nodes to accept a proposal for it to succeed

36

J. Bell GMU CS 475 Spring 2018

Paxos: Implementation Details

37

Just kidding!

J. Bell GMU CS 475 Spring 2018

ZooKeeper
• Distributed coordination service from Yahoo!

originally, now maintained as Apache project, used
widely (key component of Hadoop etc)

• Highly available, fault tolerant, performant
• Designed so that YOU don’t have to implement

Paxos for:
• Maintaining group membership, distributed data

structures, distributed locks, distributed protocol
state, etc

38

J. Bell GMU CS 475 Spring 2018

ZooKeeper - Guarantees
• Liveness guarantees: if a majority of ZooKeeper

servers are active and communicating the service
will be available

• Durability guarantees: if the ZooKeeper service
responds successfully to a change request, that
change persists across any number of failures as
long as a quorum of servers is eventually able to
recover

39

