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Review: Transactions
boolean transferMoney(Person from, Person 
to, float amount){ 
    if(from.balance >= amount) 
    { 
        from.balance = from.balance - 
amount; 
        to.balance = to.balance + amount; 
        return true; 
    } 
    return false; 
}
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Assume running on a single machine: 
What can go wrong here?
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Review: Properties of Transactions

• Traditional properties: ACID 
• Atomicity: transactions are “all or nothing” 
• Consistency: Guarantee some basic properties of 

data; each transaction leaves the database in a valid 
state  

• Isolation: Each transaction runs as if it is the only one; 
there is some valid serial ordering that represents what 
happens when transactions run concurrently 

• Durability: Once committed, updates cannot be lost 
despite failures
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Review: 2PC
Coordinator 

(client or 3rd party)
Participant 

Goliath National
Participant 

Duke & Duke
transaction
.commit() prepare

prepare
respon

seGNB

responseD&D If we can commit, then lock 
our customer, vote “yes”outcome

outcome
If everyone can commit, then 

outcome == commit, else 
abort
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Review: Recovery on Reboot
• If coordinator finds no “commit” message on disk, 

abort 
• If coordinator finds “commit” message, commit 
• If participant finds no “yes, ok” message, abort 
• If participant finds “yes, ok” message, then replay 

that message and continue protocol
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Announcements
• HW4 is out! 

• http://www.jonbell.net/gmu-cs-475-spring-2018/homework-4/ 
• Today:  

• Agreement & transactions in distributed systems (continued) 
• Reminder: lecture from last week is posted on YouTube 

• Additional readings: 
• http://the-paper-trail.org/blog/consensus-protocols-two-

phase-commit/ 
• http://the-paper-trail.org/blog/consensus-protocols-three-

phase-commit/ 
• Tannenbaum Note 8.13 (“Advanced”!)
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Timeouts in 2PC
• Example: 

• Coordinator times out waiting for Goliath National 
Bank’s response 

• Bank times out waiting for coordinator’s outcome 
message 

• Causes? 
• Network 
• Overloaded hosts 
• Both are very realistic…
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Coordinator Timeouts
• If coordinator times out waiting to hear from a bank 

• Coordinator hasn’t sent any commit messages 
yet 

• Can safely abort - send abort message 
• Preserves correctness, sacrifices performance 

(maybe didn’t need to abort!) 
• If either bank decided to commit, it’s fine - they 

will eventually abort
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Handling Bank Timeouts
• What if the bank doesn’t hear back from 

coordinator? 
• If bank voted “no”, it’s OK to abort 
• If bank voted “yes” 

• It can’t decide to abort (maybe both banks voted 
“yes” and coordinator heard this) 

• It can’t decide to commit (maybe other bank 
voted yes) 

• Does bank just wait for ever?
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Handling Bank Timeouts
• Can resolve SOME timeout problems with 

guaranteed correctness in event bank voted “yes” 
to commit 

• Bank asks other bank for status (if it heard from 
coordinator) 

• If other bank heard “commit” or “abort” then do 
that 

• If other bank didn’t hear 
• but other voted “no”: both banks abort 
• but other voted “yes”: no decision possible!
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2PC Timeouts
• We can solve a lot (but not all of the cases) by 

having the participants talk to each other 
• But, if coordinator fails, there are cases where 

everyone stalls until it recovers 
• Can the coordinator fail?… yes 
• Hence, 2PC does not guarantee liveness: a single 

node failing can cause the entire set to fail
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2PC Exercise
Coordinator 

(client or 3rd party) Participant

prepare

respon
se

outcome

Exercise round 1: 
1 Coordinator, 4 participants 

No failures, all commit

Coord
Participants

A B C D



2PC Exercise
Coordinator 

(client or 3rd party) Participant

prepare

respon
se

outcome

Exercise round 2: 
1 Coordinator, 4 participants 

Coordinator fails before providing 
outcome

Coord
Participants

A B C D



2PC Exercise
Coordinator 

(client or 3rd party) Participant

prepare

respon
se

outcome

Exercise round 3: 
1 Coordinator, 4 participants 

Coordinator provides outcome to 
1 participant, then coordinator 

and that participant fail

Coord
Participants

A B C D
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3 Phase Commit
• Goal: Eliminate this specific failure from blocking 

liveness
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Coordinator

Participant A

Participant B

Participant C

Participant D

Voted yes

Voted yesX
X Heard back “commit”

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result
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3 Phase Commit
• Goal: Avoid blocking on node failure 
• How? 

• Think about how 2PC is better than 1PC 
• 1PC means you can never change your mind or have a 

failure after committing 
• 2PC still means that you can’t have a failure after 

committing (committing is irreversible) 
• 3PC idea: 

• Split commit/abort into 2 sub-phases 
• 1: Tell everyone the outcome 
• 2: Agree on outcome 

• Now: EVERY participant knows what the result will be 
before they irrevocably commit!
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3PC Example
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Coordinator Participants (A,B,C,D)

Soliciting 
votes

prepare

respon
se

pre-commitCommit 
authorized 
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Timeout causes abortTimeout causes 
abort

Timeout causes 
abort

Timeout causes commit



3PC Exercise
Coordinator Participants (A,B,C,D)

Soliciting 
votes

prepare

respon
se

pre-commitCommit 
authorized 
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Scenario: 
1 Coordinator, 4 participants 

No failures, all commit

Timeout causes abortTimeout causes 
abort

Timeout causes 
abort

Timeout causes commit

Coord
Participants

A B C D
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3PC Crash Handling
• Can B/C/D reach a safe decision… 

• If any one of them has received 
preCommit? 
• YES! Assume A is dead. When A comes 

back online, it will recover, and talk to B/
C/D to catch up. 

• Consider equivalent to in 2PC where B/
C/D received the “commit” message 
and all voted yes
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Participant C

Participant D

CoordinatorX
Participant AX
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3PC Crash Handling
• Can B/C/D reach a safe decision… 

• If NONE of them has received preCommit? 
• YES! It is safe to abort, because A can 

not have committed (because it couldn’t 
commit until B/C/D receive and 
acknowledge the pre-commit) 

• This is the big strength of the extra 
phase over 2PC 

• Summary: Any node can crash at any time, 
and we can always safely abort or commit.
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3PC Exercise
Coordinator Participants (A,B,C,D)

Soliciting 
votes

prepare

respon
se

pre-commitCommit 
authorized 
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Scenario: 
1 Coordinator, 4 participants 

After pre-commit sent, coordinator and A fail

Timeout causes abortTimeout causes 
abort

Timeout causes 
abort

Timeout causes commit
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3PC Timeout Handling
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Coordinator Participants (A,B,C,D)

Soliciting 
votes

prepare

respon
se

pre-commitCommit 
authorized 
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Timeout causes abortTimeout causes 
abort

Timeout causes 
abort

Timeout causes commit



3PC Exercise
Coordinator Participants (A,B,C,D)

Soliciting 
votes

prepare

respon
se

pre-commitCommit 
authorized 
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Exercise round 2: 
1 Coordinator, 4 participants 

Coordinator sends pre-commit 
message then fails

Timeout causes abortTimeout causes 
abort

Timeout causes 
abort

Timeout causes commit
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Agreement
• In distributed systems, we have multiple nodes that 

need to all agree that some object has some state 
• Examples: 

• Who owns a lock 
• Whether or not to commit a transaction 
• The value of a file
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Agreement Generally
• Most distributed systems problems can be reduced to 

this one: 
• Despite being separate nodes (with potentially 

different views of their data and the world)… 
• All nodes that store the same object O must apply all 

updates to that object in the same order (consistency) 
• All nodes involved in a transaction must either commit 

or abort their part of the transaction (atomicity) 
• Easy? 

• … but nodes can restart, die or be arbitrarily slow 
• … and networks can be slow or unreliable too
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Properties of Agreement
• Safety (correctness) 

• All nodes agree on the same value (which was 
proposed by some node) 

• Liveness (fault tolerance, availability) 
• If less than N nodes crash, the rest should still 

be OK
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Does 3PC guarantee agreement?

• Reminder, that means: 
• Liveness (availability) 

• Yes! Always terminates based on timeouts 
• Safety (correctness) 

• Hmm…
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Partitions
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Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Network Partition!!!Prepared to commitPrepared to commitPrepared to commit

Timeout behavior: abortTimeout behavior: 
Commit!

Commit Authorized

Committed Aborted Aborted Aborted



3PC Exercise
Coordinator Participants (A,B,C,D)

Soliciting 
votes

prepare

respon
se

pre-commitCommit 
authorized 
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Scenario: 
1 Coordinator, 4 participants 

Coordinator sends pre-commit message ONLY to 
A, then Coordinator fails, A partitioned

Timeout causes abortTimeout causes 
abort

Timeout causes 
abort

Timeout causes commit

Coord
Participants

A B C D
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Can we fix it?
• Short answer: No. 
• Fischer, Lynch & Paterson (FLP) Impossibility 

Result: 
• Assume that nodes can only fail by crashing, 

network is reliable but can be delayed arbitrarily 
• Then, there can not be a deterministic algorithm 

for the consensus problem subject to these 
failures
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FLP - Intuition
• Why can’t we make a protocol for consensus/

agreement that can tolerate both partitions and 
node failures? 

• To tolerate a partition, you need to assume that 
eventually the partition will heal, and the network 
will deliver the delayed packages 

• But the messages might be delayed forever
• Hence, your protocol would not come to a result, 

until forever (it would not have the liveness 
property)
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Partitions
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Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Network Partition!!!Prepared to commitPrepared to commitPrepared to commit

Timeout behavior: abortTimeout behavior: 
Commit!

Commit Authorized

Committed Aborted Aborted Aborted

Insight: There is a “majority” partition here (B,C,D) 
The “minority” know that they are not in the majority (A can 

only talk to Coordinator, knows B, C, D might exist)

Can we let B, C, D proceed safely while stalling A and D?
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Partition Tolerance
• Key idea: if you always have an odd number of 

nodes… 
• There will always be a minority partition and a 

majority partition 
• Give up processing in the minority until partition 

heals and network resumes 
• Majority can continue processing

33



J. Bell GMU CS 475 Spring 2018

Partition Tolerant Consensus Algorithms

• Decisions made by majority
• Typically a fixed coordinator (leader) during a time period 

(epoch) 
• How does the leader change? 

• Assume it starts out as an arbitrary node 
• The leader sends a heartbeat 
• If you haven’t heard from the leader, then you challenge it 

by advancing to the next epoch and try to elect a new one 
• If you don’t get a majority of votes, you don’t get to be 

leader 
• …hence no leader in a minority partition
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Partition Tolerant 
Consensus Algorithms
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Paxos: High Level
• One (or more) nodes decide to be leader 

(proposer) 
• Leader proposes a value, solicits acceptance from 

the rest of the nodes 
• Leader announces chosen value, or tries again if it 

failed to get all nodes to agree on that value 
• Lots of tricky corners (failure handling) 
• In sum: requires only a majority of the (non-leader) 

nodes to accept a proposal for it to succeed
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Paxos: Implementation Details
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ZooKeeper
• Distributed coordination service from Yahoo! 

originally, now maintained as Apache project, used 
widely (key component of Hadoop etc) 

• Highly available, fault tolerant, performant 
• Designed so that YOU don’t have to implement 

Paxos for: 
• Maintaining group membership, distributed data 

structures, distributed locks, distributed protocol 
state, etc
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ZooKeeper - Guarantees
• Liveness guarantees: if a majority of ZooKeeper 

servers are active and communicating the service 
will be available 

• Durability guarantees: if the ZooKeeper service 
responds successfully to a change request, that 
change persists across any number of failures as 
long as a quorum of servers is eventually able to 
recover
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