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Review: Consistency
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A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

Set A=5

“OK!”
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Review: Sequential Consistency
• There is some total order of operations so that: 
• Each CPUs operations appear in order 
• All CPUs see results according to that order (read most 

recent writes) 
• Consider this case, noting that there are no locks to 

enforce the ordering
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P1 W(X) a
P2 W(X) b
P3 R(X) b R(X) a
P4 R(X) b R(X) a

Sequentially consistent. NOT strictly consistent 
W(X)b, R(X)b,R(X)b,W(X)a, R(X)a, R(X)a
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Review: Sequential Consistency
• There is some total order of operations so that: 
• Each CPUs operations appear in order 
• All CPUs see results according to that order (read most 

recent writes) 
• Consider this case, noting that there are no locks to 

enforce the ordering
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P1 W(X) a
P2 W(X) b
P3 R(X) b R(X) a
P4 R(X) a R(X) b
Not sequentially consistent



Review: Ivy Architecture
cached data

cached data cached data

Each node keeps a 
cached copy of  

each piece of data 
it reads

If some data 
doesn’t exist locally, 

request it from 
remote node
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Announcements
• HW4 is out! 

• http://www.jonbell.net/gmu-cs-475-spring-2018/homework-4/ 
• Today:  

• Relaxed consistency models 
• Causal consistency 
• Eventual consistency 

• File synchronization 
• Disconnected synchronization 

• Road map: Project out on Weds. What’s left?  
• Case studies & architectures. P2P. Security & failure modes 

• Additional readings: 
• Tannenbaum 7.2-7.3
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http://www.jonbell.net/gmu-cs-475-spring-2018/homework-4/
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Sequential Consistency
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Availability
• Our protocol for sequential consistency does NOT 

guarantee that the system will be available!
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A B A B

Set A=5

6 7 765

Read A

Set A=5
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Consistent + Available
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A B A B

Set A=5

6 7 765

“OK”! “5”!

Set A=5

Read A

Assume 
replica failed
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Still broken...
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A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume 

replica failed

Read A “6”!
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Network Partitions
• The communication links between nodes may fail 

arbitrarily 
• But other nodes might still be able to reach that 

node
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Assume 
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Read A “6”!
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CAP Theorem

• Pick two of three: 
• Consistency: All nodes see the same data 

at the same time (sequential consistency) 
• Availability: Individual node failures do not 

prevent survivors from continuing to operate 
• Partition tolerance: The system continues to 

operate despite message loss (from 
network and/or node failure) 

• You can not have all three, ever
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O
ur goals as 

 system
 builders

A property of 
 the environm

ent



J. Bell GMU CS 475 Spring 2018

CAP Theorem vs FLP
• FLP: Can not guarantee both liveness and 

agreement assuming messages may be delayed 
but are eventually delivered 

• CAP: Can not guarantee consistency, availability, 
partition-tolerance assuming messages may be 
dropped 

• Nice comparison: http://the-paper-trail.org/blog/flp-
and-cap-arent-the-same-thing/
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http://the-paper-trail.org/blog/flp-and-cap-arent-the-same-thing/
http://the-paper-trail.org/blog/flp-and-cap-arent-the-same-thing/
http://the-paper-trail.org/blog/flp-and-cap-arent-the-same-thing/


J. Bell GMU CS 475 Spring 2018

CAP Theorem
• C+A: Provide strong consistency and availability, 

assuming there are no network partitions 
• C+P: Provide strong consistency in the presence of 

network partitions; minority partition is unavailable 
• A+P: Provide availability even in presence of 

partitions; no sequential consistency guarantee, 
maybe can guarantee something else
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Relaxing Consistency
• We can relax two design principles: 

• How stale reads can be 
• The ordering of writes across the replicas

16



Allowing Stale Reads

P1 W(X) 0 R(X) R(X) R(X)

P2 W(X) 1 R(X) W (X) 0 R(X)

P3 R(X) R(X) R(X)
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Allowing Stale Reads
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class MyObj { 
 int x = 0; 
 int y = 0; 
  
 void thread0() 
 { 
   x = 1; 

    if(y==0) 
      System.out.println(“OK"); 
 } 
 void thread1() 
 { 
   y = 1; 
   if(x==0) 
    System.out.println(“OK"); 
 } 
} 

"OK"

"OK"
"OK"

""

Java’s memory model is “relaxed” in that you can have stale 
reads
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Relaxing Consistency
• Intuition: less constraints means less coordination 

overhead, less prone to partition failure
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P1 W(X) 0 R(X) [0,1] R(X) [0,1] R(X) [0,1]

P2 W(X) 1 R(X) [0,1] W (X) 0 R(X) [0,1]

P3 R(X) [0,1] R(X) [0,1] R(X) [0,1]
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Naïve DSM
• Assume each machine has a complete copy of 

memory 
• Reads from local memory 
• Writes broadcast update to other machines, then 

immediately continue
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class Machine1 { 
DSMInt x = 0; 
DSMInt y = 0; 

static void main(String[] args) 
{ 
x = 1; 
if(y==0) 

  System.out.println(“OK"); 
} 

} 

class Machine2 { 
DSMInt x = 0; 
DSMInt y = 0; 

static void main(String[] args) 
{ 
y = 1; 
if(x==0) 

 System.out.println(“OK"); 
} 

} 
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Naïve DSM
• Assume each machine has a complete copy of 

memory 
• Reads from local memory 
• Writes broadcast update to other machines, then 

immediately continue
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class Machine1 { 
DSMInt x = 0; 
DSMInt y = 0; 

static void main(String[] args) 
{ 
x = 1; 
if(y==0) 

  System.out.println(“OK"); 
} 

} 

class Machine2 { 
DSMInt x = 0; 
DSMInt y = 0; 

static void main(String[] args) 
{ 
y = 1; 
if(x==0) 

 System.out.println(“OK"); 
} 

} 

1
11

1
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Naïve DSM
• Assume each machine has a complete copy of 

memory 
• Reads from local memory 
• Writes broadcast update to other machines, then 

immediately continue
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class Machine1 { 
DSMInt x = 0; 
DSMInt y = 0; 

static void main(String[] args) 
{ 
x = 1; 
if(y==0) 

  System.out.println(“OK"); 
} 

} 

class Machine2 { 
DSMInt x = 0; 
DSMInt y = 0; 

static void main(String[] args) 
{ 
y = 1; 
if(x==0) 

 System.out.println(“OK"); 
} 

} 

1
11

1 Is this correct?
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Naïve DSM
• It definitely is not sequentially consistent 
• Are there any guarantees that it provides though? 

• Reads can be stale 
• Writes can be re-ordered 
• Not really. 

• Can we come up with something more clever 
though with SOME guarantee? 
• (Not as is, but with some modifications maybe 

it’s…)

23
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Causal Consistency
• An execution is causally-consistent if all 

causally-related read/write operations are 
executed in an order that reflects their causality 

• Reads are fresh ONLY for writes that they are 
dependent on 

• Causally-related writes appear in order, but not in 
order to others 

• Concurrent writes can be seen in different orders

24
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Causal Consistency

25

P1 W(X)a W(X)c
P2 R(X)a W(X)b
P3 R(X)a R(X)c R(X)b 
P4 R(X)a R(X)b R(x)c

Causally Consistent. W(X) b and W(X) c are not related, 
hence could have happened one either order. 

W(X)a and W(X)B ARE causally related and must occur in this 
order
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Causal Consistency

26

P1 W(X)a
P2 R(X)a W(X)b
P3 R(x)b R(x)a
P4 R(x)a R(x)b

NOT Causally Consistent. X couldn’t have been b after it was 
a

P1 W(X)a
P2 W(X)b
P3 R(x)b R(x)a
P4 R(x)a R(x)b

Causally Consistent. X can be a or b concurrently
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Why Causal Consistency?
• It is clearly weaker than sequential consistency 

• (Note that anything that is sequentially consistent 
is also causally consistent) 

• Many more operations for concurrency 
• Parallel (non-dependent) operations can occur in 

parallel in different places 
• Sequential would enforce a global ordering 

• E.g. if W(X) and W(Y) occur at the same time, 
and without dependencies, then they can occur 
without any locking

27
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Eventual Consistency
• Allow stale reads, but ensure that reads will 

eventually reflect the previously written values 
• Eventually: milliseconds, seconds, minutes, 

hours, years… 
• Writes are NOT ordered as executed 

• Allows for conflicts. Consider: Dropbox 
• Git is eventually consistent

28
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Eventual Consistency
• More concurrency than strict, sequential or causal 

• These require highly available connections to 
send messages, and generate lots of chatter 

• Far looser requirements on network connections 
• Partitions: OK! 
• Disconnected clients: OK! 
• Always available! 

• Possibility for conflicting writes :(

29



Review: Ivy Architecture
cached data

cached data cached data

Each node keeps a 
cached copy of  each 
piece of data it reads

If some data doesn’t exist 
locally, request it from 

remote node

Write X=1
x=0

x=0

x=1

invalidate xinvalidate x

Read XRead X

read xread x

x=1x=1

All of these messages… 
All of the clients must always be online! 

Relax!
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Sequential vs Eventual Consistency
• Sequential: “Pessimistic” concurrency control 

• Assume that everything could cause a conflict, 
decide on an update order as things execute, 
then enforce it 

• Eventual: “Optimistic” concurrency control 
• Just do everything, and if you can’t resolve what 

something should be, sort it out later 
• Can be tough to resolve in general case

31
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Eventual Consistency: Distributed Filesystem

32

When everything can talk, it’s easy to synchronize, right?
Goal: Everything eventually becomes synchronized. 
No lost updates (don’t replace new version with old)
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Eventual Consistency: Distributed Filesystem

33

When everything can talk, it’s easy to synchronize, right?
Goal: Everything eventually becomes synchronized. 
No lost updates (don’t replace new version with old)

Fix: Add 
coordinating sync 

server
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Eventual Consistency: Distributed Filesystem

• Role of the sync server: 
• Resolve conflicting changes, report conflicts to 

user 
• Do not allow sync between clients 
• Detect if updates are sequential 
• Enforce ordering constraints

34
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Detecting Conflicts

35

Do we just use timestamps?

write x = a

write x = b

t=0

t=1
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Detecting Conflicts

36

write x = a

write x = b

Do we just use timestamps?

t=0

t=1

NO, what if clocks are out of sync?
NO does not actually detect conflicts
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Detecting Conflicts

37

write x = a

write x = b

Solution: Track version history on clients

v=0

v=0

Still doesn’t tell us what to do with a conflict
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Client-Centric Consistency
• What can we guarantee in disconnected 

operation? 
• Monotinic-reads: any future reads will return the 

same or newer value (never older) 
• Monotonic-writes: A processes’ writes are always 

processed in order 
• Read-you-writes 
• Writes follow reads

38



Eventually Consistent + 
Available + Partition Tolerant

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume 

replica failed

Read A “6”!

5

Read A “5”!
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Choosing a consistency model
• Sequential consistency 

• All over - it’s the most intuitive 
• Causal consistency 

• Increasingly useful 
• Eventual consistency 

• Very popular in industry and academia 
• File synchronizers, Amazon’s Bayou and more

40
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Example: Facebook
• Problem: >1 billion active users 
• Solutions: Thousands of servers across the world 
• What kind of consistency guarantees are 

reasonable? Need 100% availability! 
• If I post a story on my news feed, is it OK if it 

doesn’t immediately show up on yours? 
• Two users might not see the same data at the 

same time 
• Now this is “solved” anyway because there is no 

“sort by most recent first” option anyway

41
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Example: Airline Reservations
• Reservations and flight inventory are managed by a 

GDS (Global Distribution System), who acts as a 
middle broker between airlines, ticket agencies and 
consumers [Except for Southwest and Air New 
Zealand and other oddballs] 

• GDS needs to sell as many seats as possible within 
given constraints 

• If I have 100 seats for sale on a flight, does it matter if 
reservations for flights are reconciled immediately? 

• If I have 5 seats for sale on a flight, does it matter if 
reservations are reconciled immediately?

42
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Example: Airline Reservations
• Result: Reservations can be made using either a 

strong consistency model or a weak, eventual one 
• Most reservations are made under the normal 

strong model (reservation is confirmed 
immediately) 

• GDS also supports “Long Sell” - issue a reservation 
without confirmed availability, need to eventually 
reconcile it 

• Long sells require the seller to make clear to the 
customer that even though there’s a confirmation 
number it’s not confirmed!

43
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Filesystem consistency
• What consistency guarantees do a filesystem 

provide? 
• read, write, sync, close 
• On sync, guarantee writes are persisted to disk 
• Readers see most recent 
• What does a network file system do?

44
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Network Filesystem Consistency
• How do you maintain these same semantics? 
• (Cheat answer): Very, very expensive 

• EVERY write needs to propagate out 
• EVERY read needs to make sure it sees the most 

recent write 
• Oof. Just like Ivy.

45
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Consistency Takeaways
• Strong consistency (sequential or strict) comes at a 

tradeoff: performance, availability 
• Weaker consistency also has a tradeoff (weaker 

consistency) 
• But: applications can make these design choices 

clear to end-users 
• Facebook 
• Dropbox
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