
Consistency II
CS 475, Spring 2018

Concurrent & Distributed Systems

Review: Java Memory Model

CPU 1

CPU 2

thread0()

thread1()

Main
Memory

CPU 1 Cache

CPU 2 Cache

100ns7ns

J. Bell GMU CS 475 Spring 2018

Review: Consistency

3

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

Set A=5

“OK!”

5

J. Bell GMU CS 475 Spring 2018

Review: Sequential Consistency
• There is some total order of operations so that:
• Each CPUs operations appear in order
• All CPUs see results according to that order (read most

recent writes)
• Consider this case, noting that there are no locks to

enforce the ordering

4

P1 W(X) a
P2 W(X) b
P3 R(X) b R(X) a
P4 R(X) b R(X) a

Sequentially consistent. NOT strictly consistent
W(X)b, R(X)b,R(X)b,W(X)a, R(X)a, R(X)a

J. Bell GMU CS 475 Spring 2018

Review: Sequential Consistency
• There is some total order of operations so that:
• Each CPUs operations appear in order
• All CPUs see results according to that order (read most

recent writes)
• Consider this case, noting that there are no locks to

enforce the ordering

5

P1 W(X) a
P2 W(X) b
P3 R(X) b R(X) a
P4 R(X) a R(X) b
Not sequentially consistent

Review: Ivy Architecture
cached data

cached data cached data

Each node keeps a
cached copy of

each piece of data
it reads

If some data
doesn’t exist locally,

request it from
remote node

J. Bell GMU CS 475 Spring 2018

Announcements
• HW4 is out!

• http://www.jonbell.net/gmu-cs-475-spring-2018/homework-4/
• Today:

• Relaxed consistency models
• Causal consistency
• Eventual consistency

• File synchronization
• Disconnected synchronization

• Road map: Project out on Weds. What’s left?
• Case studies & architectures. P2P. Security & failure modes

• Additional readings:
• Tannenbaum 7.2-7.3

7

http://www.jonbell.net/gmu-cs-475-spring-2018/homework-4/

J. Bell GMU CS 475 Spring 2018

Sequential Consistency

8

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

Set A=5

“OK!”

5

J. Bell GMU CS 475 Spring 2018

Availability
• Our protocol for sequential consistency does NOT

guarantee that the system will be available!

9

A B A B

Set A=5

6 7 765

Read A

Set A=5

J. Bell GMU CS 475 Spring 2018

Consistent + Available

10

A B A B

Set A=5

6 7 765

“OK”! “5”!

Set A=5

Read A

Assume
replica failed

J. Bell GMU CS 475 Spring 2018

Still broken...

11

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume

replica failed

Read A “6”!

J. Bell GMU CS 475 Spring 2018

Network Partitions
• The communication links between nodes may fail

arbitrarily
• But other nodes might still be able to reach that

node

12

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume

replica failed

Read A “6”!

J. Bell GMU CS 475 Spring 2018

CAP Theorem

• Pick two of three:
• Consistency: All nodes see the same data

at the same time (sequential consistency)
• Availability: Individual node failures do not

prevent survivors from continuing to operate
• Partition tolerance: The system continues to

operate despite message loss (from
network and/or node failure)

• You can not have all three, ever

13

O
ur goals as

 system
 builders

A property of
 the environm

ent

J. Bell GMU CS 475 Spring 2018

CAP Theorem vs FLP
• FLP: Can not guarantee both liveness and

agreement assuming messages may be delayed
but are eventually delivered

• CAP: Can not guarantee consistency, availability,
partition-tolerance assuming messages may be
dropped

• Nice comparison: http://the-paper-trail.org/blog/flp-
and-cap-arent-the-same-thing/

14

http://the-paper-trail.org/blog/flp-and-cap-arent-the-same-thing/
http://the-paper-trail.org/blog/flp-and-cap-arent-the-same-thing/
http://the-paper-trail.org/blog/flp-and-cap-arent-the-same-thing/

J. Bell GMU CS 475 Spring 2018

CAP Theorem
• C+A: Provide strong consistency and availability,

assuming there are no network partitions
• C+P: Provide strong consistency in the presence of

network partitions; minority partition is unavailable
• A+P: Provide availability even in presence of

partitions; no sequential consistency guarantee,
maybe can guarantee something else

15

J. Bell GMU CS 475 Spring 2018

Relaxing Consistency
• We can relax two design principles:

• How stale reads can be
• The ordering of writes across the replicas

16

Allowing Stale Reads

P1 W(X) 0 R(X) R(X) R(X)

P2 W(X) 1 R(X) W (X) 0 R(X)

P3 R(X) R(X) R(X)

J. Bell GMU CS 475 Spring 2018

Allowing Stale Reads

18

class MyObj {
 int x = 0;
 int y = 0;

 void thread0()
 {
 x = 1;

 if(y==0)
 System.out.println(“OK");
 }
 void thread1()
 {
 y = 1;
 if(x==0)
 System.out.println(“OK");
 }
}

"OK"

"OK"
"OK"

""

Java’s memory model is “relaxed” in that you can have stale
reads

J. Bell GMU CS 475 Spring 2018

Relaxing Consistency
• Intuition: less constraints means less coordination

overhead, less prone to partition failure

19

P1 W(X) 0 R(X) [0,1] R(X) [0,1] R(X) [0,1]

P2 W(X) 1 R(X) [0,1] W (X) 0 R(X) [0,1]

P3 R(X) [0,1] R(X) [0,1] R(X) [0,1]

J. Bell GMU CS 475 Spring 2018

Naïve DSM
• Assume each machine has a complete copy of

memory
• Reads from local memory
• Writes broadcast update to other machines, then

immediately continue

20

class Machine1 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
x = 1;
if(y==0)

 System.out.println(“OK");
}

}

class Machine2 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
y = 1;
if(x==0)

 System.out.println(“OK");
}

}

J. Bell GMU CS 475 Spring 2018

Naïve DSM
• Assume each machine has a complete copy of

memory
• Reads from local memory
• Writes broadcast update to other machines, then

immediately continue

21

class Machine1 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
x = 1;
if(y==0)

 System.out.println(“OK");
}

}

class Machine2 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
y = 1;
if(x==0)

 System.out.println(“OK");
}

}

1
11

1

J. Bell GMU CS 475 Spring 2018

Naïve DSM
• Assume each machine has a complete copy of

memory
• Reads from local memory
• Writes broadcast update to other machines, then

immediately continue

22

class Machine1 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
x = 1;
if(y==0)

 System.out.println(“OK");
}

}

class Machine2 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
y = 1;
if(x==0)

 System.out.println(“OK");
}

}

1
11

1 Is this correct?

J. Bell GMU CS 475 Spring 2018

Naïve DSM
• It definitely is not sequentially consistent
• Are there any guarantees that it provides though?

• Reads can be stale
• Writes can be re-ordered
• Not really.

• Can we come up with something more clever
though with SOME guarantee?
• (Not as is, but with some modifications maybe

it’s…)

23

J. Bell GMU CS 475 Spring 2018

Causal Consistency
• An execution is causally-consistent if all

causally-related read/write operations are
executed in an order that reflects their causality

• Reads are fresh ONLY for writes that they are
dependent on

• Causally-related writes appear in order, but not in
order to others

• Concurrent writes can be seen in different orders

24

J. Bell GMU CS 475 Spring 2018

Causal Consistency

25

P1 W(X)a W(X)c
P2 R(X)a W(X)b
P3 R(X)a R(X)c R(X)b
P4 R(X)a R(X)b R(x)c

Causally Consistent. W(X) b and W(X) c are not related,
hence could have happened one either order.

W(X)a and W(X)B ARE causally related and must occur in this
order

J. Bell GMU CS 475 Spring 2018

Causal Consistency

26

P1 W(X)a
P2 R(X)a W(X)b
P3 R(x)b R(x)a
P4 R(x)a R(x)b

NOT Causally Consistent. X couldn’t have been b after it was
a

P1 W(X)a
P2 W(X)b
P3 R(x)b R(x)a
P4 R(x)a R(x)b

Causally Consistent. X can be a or b concurrently

J. Bell GMU CS 475 Spring 2018

Why Causal Consistency?
• It is clearly weaker than sequential consistency

• (Note that anything that is sequentially consistent
is also causally consistent)

• Many more operations for concurrency
• Parallel (non-dependent) operations can occur in

parallel in different places
• Sequential would enforce a global ordering

• E.g. if W(X) and W(Y) occur at the same time,
and without dependencies, then they can occur
without any locking

27

J. Bell GMU CS 475 Spring 2018

Eventual Consistency
• Allow stale reads, but ensure that reads will

eventually reflect the previously written values
• Eventually: milliseconds, seconds, minutes,

hours, years…
• Writes are NOT ordered as executed

• Allows for conflicts. Consider: Dropbox
• Git is eventually consistent

28

J. Bell GMU CS 475 Spring 2018

Eventual Consistency
• More concurrency than strict, sequential or causal

• These require highly available connections to
send messages, and generate lots of chatter

• Far looser requirements on network connections
• Partitions: OK!
• Disconnected clients: OK!
• Always available!

• Possibility for conflicting writes :(

29

Review: Ivy Architecture
cached data

cached data cached data

Each node keeps a
cached copy of each
piece of data it reads

If some data doesn’t exist
locally, request it from

remote node

Write X=1
x=0

x=0

x=1

invalidate xinvalidate x

Read XRead X

read xread x

x=1x=1

All of these messages…
All of the clients must always be online!

Relax!

J. Bell GMU CS 475 Spring 2018

Sequential vs Eventual Consistency
• Sequential: “Pessimistic” concurrency control

• Assume that everything could cause a conflict,
decide on an update order as things execute,
then enforce it

• Eventual: “Optimistic” concurrency control
• Just do everything, and if you can’t resolve what

something should be, sort it out later
• Can be tough to resolve in general case

31

J. Bell GMU CS 475 Spring 2018

Eventual Consistency: Distributed Filesystem

32

When everything can talk, it’s easy to synchronize, right?
Goal: Everything eventually becomes synchronized.
No lost updates (don’t replace new version with old)

J. Bell GMU CS 475 Spring 2018

Eventual Consistency: Distributed Filesystem

33

When everything can talk, it’s easy to synchronize, right?
Goal: Everything eventually becomes synchronized.
No lost updates (don’t replace new version with old)

Fix: Add
coordinating sync

server

J. Bell GMU CS 475 Spring 2018

Eventual Consistency: Distributed Filesystem

• Role of the sync server:
• Resolve conflicting changes, report conflicts to

user
• Do not allow sync between clients
• Detect if updates are sequential
• Enforce ordering constraints

34

J. Bell GMU CS 475 Spring 2018

Detecting Conflicts

35

Do we just use timestamps?

write x = a

write x = b

t=0

t=1

J. Bell GMU CS 475 Spring 2018

Detecting Conflicts

36

write x = a

write x = b

Do we just use timestamps?

t=0

t=1

NO, what if clocks are out of sync?
NO does not actually detect conflicts

J. Bell GMU CS 475 Spring 2018

Detecting Conflicts

37

write x = a

write x = b

Solution: Track version history on clients

v=0

v=0

Still doesn’t tell us what to do with a conflict

J. Bell GMU CS 475 Spring 2018

Client-Centric Consistency
• What can we guarantee in disconnected

operation?
• Monotinic-reads: any future reads will return the

same or newer value (never older)
• Monotonic-writes: A processes’ writes are always

processed in order
• Read-you-writes
• Writes follow reads

38

Eventually Consistent +
Available + Partition Tolerant

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume

replica failed

Read A “6”!

5

Read A “5”!

J. Bell GMU CS 475 Spring 2018

Choosing a consistency model
• Sequential consistency

• All over - it’s the most intuitive
• Causal consistency

• Increasingly useful
• Eventual consistency

• Very popular in industry and academia
• File synchronizers, Amazon’s Bayou and more

40

J. Bell GMU CS 475 Spring 2018

Example: Facebook
• Problem: >1 billion active users
• Solutions: Thousands of servers across the world
• What kind of consistency guarantees are

reasonable? Need 100% availability!
• If I post a story on my news feed, is it OK if it

doesn’t immediately show up on yours?
• Two users might not see the same data at the

same time
• Now this is “solved” anyway because there is no

“sort by most recent first” option anyway

41

J. Bell GMU CS 475 Spring 2018

Example: Airline Reservations
• Reservations and flight inventory are managed by a

GDS (Global Distribution System), who acts as a
middle broker between airlines, ticket agencies and
consumers [Except for Southwest and Air New
Zealand and other oddballs]

• GDS needs to sell as many seats as possible within
given constraints

• If I have 100 seats for sale on a flight, does it matter if
reservations for flights are reconciled immediately?

• If I have 5 seats for sale on a flight, does it matter if
reservations are reconciled immediately?

42

J. Bell GMU CS 475 Spring 2018

Example: Airline Reservations
• Result: Reservations can be made using either a

strong consistency model or a weak, eventual one
• Most reservations are made under the normal

strong model (reservation is confirmed
immediately)

• GDS also supports “Long Sell” - issue a reservation
without confirmed availability, need to eventually
reconcile it

• Long sells require the seller to make clear to the
customer that even though there’s a confirmation
number it’s not confirmed!

43

J. Bell GMU CS 475 Spring 2018

Filesystem consistency
• What consistency guarantees do a filesystem

provide?
• read, write, sync, close
• On sync, guarantee writes are persisted to disk
• Readers see most recent
• What does a network file system do?

44

J. Bell GMU CS 475 Spring 2018

Network Filesystem Consistency
• How do you maintain these same semantics?
• (Cheat answer): Very, very expensive

• EVERY write needs to propagate out
• EVERY read needs to make sure it sees the most

recent write
• Oof. Just like Ivy.

45

J. Bell GMU CS 475 Spring 2018

Consistency Takeaways
• Strong consistency (sequential or strict) comes at a

tradeoff: performance, availability
• Weaker consistency also has a tradeoff (weaker

consistency)
• But: applications can make these design choices

clear to end-users
• Facebook
• Dropbox

46

