
Map Reduce & GFS
CS 475, Spring 2018

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2018

Review CAP Theorem
• Pick two of three:

• Consistency: All nodes see the same data at the same
time (strong consistency)

• Availability: Individual node failures do not prevent
survivors from continuing to operate

• Partition tolerance: The system continues to operate
despite message loss (from network and/or node
failure)

• You can not have all three, ever*
• If you relax your consistency guarantee, you might be

able to guarantee THAT…

!2

J. Bell GMU CS 475 Spring 2018

Review: CAP Theorem
• C+A: Provide strong consistency and availability,

assuming there are no network partitions
• C+P: Provide strong consistency in the presence of

network partitions; minority partition is unavailable
• A+P: Provide availability even in presence of

partitions; no strong consistency guarantee

!3

J. Bell GMU CS 475 Spring 2018

Relaxing Consistency
• We can relax two design principles:

• How stale reads can be
• The ordering of writes across the replicas

!4

J. Bell GMU CS 475 Spring 2018

Eventual Consistency
• Allow stale reads, but ensure that reads will

eventually reflect the previously written values
• Eventually: milliseconds, seconds, minutes,

hours, years…
• Writes are NOT ordered as executed

• Allows for conflicts. Consider: Dropbox
• Git is eventually consistent

!5

J. Bell GMU CS 475 Spring 2018

Announcements
• HW4 Due Friday
• Project is out!!!

• http://www.jonbell.net/gmu-cs-475-spring-2018/
final-project/

• (Hey, it could be worse)
• Today:

• Big data problems
• Additional readings:

• GFS, MapReduce papers

!6

http://www.jonbell.net/gmu-cs-475-spring-2018/final-project/
http://www.jonbell.net/gmu-cs-475-spring-2018/final-project/
http://www.jonbell.net/gmu-cs-475-spring-2018/final-project-boss-mode/
https://research.google.com/archive/gfs-sosp2003.pdf
https://research.google.com/archive/mapreduce-osdi04.pdf

J. Bell GMU CS 475 Spring 2018

More data, more problems
• I have a 1TB file
• I need to sort it
• …My computer can only read 60MB/sec
• …
• …
• …
• 1 day later, it’s done

!7

J. Bell GMU CS 475 Spring 2018

More data, more problems
• Think about scale:

• Google indexes ~20 petabytes of web pages
per day (as of 2008!)

• Facebook has 2.5 petabytes of user data,
increases by 15 terabytes/day (as of 2009!)

!8

J. Bell GMU CS 475 Spring 2018

Distributing Computation

!9

J. Bell GMU CS 475 Spring 2018

Distributing Computation
• Can't I just add 100 nodes and sort my file 100

times faster?
• Not so easy:

• Sending data to/from nodes
• Coordinating among nodes
• Recovering when one node fails
• Optimizing for locality
• Debugging

!10

J. Bell GMU CS 475 Spring 2018

Distributing Computation
• We begin to answer

• 1. How do we store the data?
• 2. How do we compute on this data?s

!11

J. Bell GMU CS 475 Spring 2018

GFS (Google File System)
• Google apps observed to have specific R/W

patterns (usually read recent data, lots of data, etc)
• Normal FS API (POSIX) is constraining (consider:

CFS contains a ton of annoying glue to make it
work)

• Hence, Google made their own FS

!12

J. Bell GMU CS 475 Spring 2018

GFS
• Hundreds of thousands of regular servers
• Millions of regular disks
• Failures are normal

• App bugs, OS bugs
• Human Error
• Disk failure, memory failure, network failure, etc

• Huge number of concurrent reads, writes

!13

J. Bell GMU CS 475 Spring 2018

GFS Workload
• (Relatively) small total number of large files

(>100MB) - millions
• Large, streaming reads (reading > 1MB at a time)
• Large, sequential writes that always append to end

of a file
• Multiple clients might append concurrently

!14

J. Bell GMU CS 475 Spring 2018

GFS Design Goals
• Unified FS for all google platforms (e.g. gmail,

youtube)
• Data + system availability
• Graceful + transparent failure handling
• Low synchronization overhead
• Exploit parallelism
• High throughput and low latency

!15

GFS Architecture

J. Bell GMU CS 475 Spring 2018

GFS Architecture
• Single master server (RSM replication to backups)

• Holds all metadata (in RAM!) - namespace, ACL,
file-chunk mapping

• In charge of migrating chunks, GC’ing chunks
• Data stored in 64MB chunks each with some ID

• Compare to EXT-4’s 4KB block
• Thousands of chunk servers

• Chunks are replicated
• Chunk servers don’t cache anything in RAM, store

chunks as regular files

!17

J. Bell GMU CS 475 Spring 2018

GFS Client
• Makes metadata requests to master server
• Makes chunk requests to chunk servers
• Caches metadata
• Does not cache data (chunks)

• Google’s workload (streaming reads, appending
writes) doesn’t benefit from caching, so why
bother with consistency nightmare

!18

J. Bell GMU CS 475 Spring 2018

GFS Reads
• Client asks master for chunk ID, chunk version

number, and location of replicas given a file name
• By default, GFS replicates each chunk to 3 servers
• Client sends read request to closest (in network

topology) chunk server

!19

J. Bell GMU CS 475 Spring 2018

GFS Writes
• Client asks master for replicas storing a chunk (one

is arbitrarily declared primary)
• Client sends write request to all replicas
• Each replica acknowledges write to primary replica
• Primary coordinates commit between all of the

replicas
• On success, primary replies to client

!20

J. Bell GMU CS 475 Spring 2018

GFS Chunk Primaries
• There needs to be exactly one primary for each chunk
• GFS ensures this using leases

• Master selects a chunk server and grants it a lease
• The chunk server holds the lease for T seconds,

and is primary
• Chunk server can refresh lease endlessly
• If chunk server fails to refresh it, falls out of being

primary
• Like a lock, but needs to be renewed (like with a heart

beat)

!21

J. Bell GMU CS 475 Spring 2018

GFS Consistency
• Metadata changes are atomic. Occur only on a

single machine, so no distributed issues.
• Changes to data are ordered as arbitrarily chosen

by the primary chunk server for a chunk

!22

J. Bell GMU CS 475 Spring 2018

GFS Summary
• Limitations:

• Master is a huge bottleneck
• Recovery of master is slow

• Lots of success at Google
• Performance isn't great for all apps
• Consistency needs to be managed by apps
• Replaced in 2010 by Google's Colossus system -

eliminates master

!23

J. Bell GMU CS 475 Spring 2018

Distributing Computation
• Lots of these challenges re-appear, regardless of

our specific problem
• How to split up the task
• How to put the results back together
• How to store the data (GFS)

• Enter, MapReduce

!24

J. Bell GMU CS 475 Spring 2018

MapReduce
• A programming model for large-scale computations

• Takes large inputs, produces output
• No side-effects or persistent state other than that

input and output
• Runtime library

• Automatic parallelization
• Load balancing
• Locality optimization
• Fault tolerance

!25

J. Bell GMU CS 475 Spring 2018

MapReduce
• Partition data into splits (map)
• Aggregate, summarize, filter or transform that data

(reduce)
• Programmer provides these two methods

!26

J. Bell GMU CS 475 Spring 2018

MapReduce: Divide & Conquer

!27

Combine

Result

r1 r2 r3 r4 r5

worker worker worker worker worker

w1 w2 w3 w4 w5

Partition

Big Data (lots of work)

J. Bell GMU CS 475 Spring 2018

MapReduce: Example
• Calculate word frequencies in documents
• Input: files, one document per record
• Map parses documents into words

• Key - Word
• Value - Frequency of word

• Reduce: compute sum for each key

!28

J. Bell GMU CS 475 Spring 2018

MapReduce: Example

!29

Input 1:
apple orange mango
 orange grapes plum

Input 2:
apple plum mango
 apple apple plum

apple orange mango

 orange grapes plum

 apple apple plum

apple plum mango

apple, 1
orange, 1
mango, 1

orange, 1
grapes, 1
plum, 1

apple, 1
plum, 1

mango, 1

apple, 1 
apple, 1
plum, 1

Each line goes to a
mapper

Map splits key->value

to reduce

J. Bell GMU CS 475 Spring 2018

MapReduce: Example

!30

apple, 1
orange, 1
mango, 1

orange, 1
grapes, 1
plum, 1

apple, 1
plum, 1

mango, 1

apple, 1  
apple, 1
plum, 1

From Map apple, 1
apple, 1
apple, 2

grape, 1

mango, 1
mango, 1

orange, 1
orange, 1

plum, 1
plum, 1
plum, 1

Sort, shuffle

apple, 4

grape, 1

mango, 2

orange, 2

plum, 3

Reduce

apple, 4 
grape, 1 
mango, 2 
orange, 2 
plum, 3

Final Output

J. Bell GMU CS 475 Spring 2018

MapReduce Applications
• Distributed grep
• Distributed clustering
• Web link graph traversal
• Detecting duplicate web pages

!31

J. Bell GMU CS 475 Spring 2018

MapReduce: Implementation
• Each worker node is also a GFS chunk server!

!32

J. Bell GMU CS 475 Spring 2018

MapReduce: Scheduling
• One master, many workers
• Input data split into M map tasks (typically 64MB

ea)
• R reduce tasks
• Tasks assigned to works dynamically; stateless

and idempotent -> easy fault tolerance for workers
• Typical numbers:

• 200,000 map tasks, 4,000 reduce tasks across
2,000 workers

!33

J. Bell GMU CS 475 Spring 2018

MapReduce: Scheduling
• Master assigns map task to a free worker

• Prefer "close-by" workers for each task (based on
data locality)

• Worker reads task input, produces intermediate
output, stores locally (K/V pairs)

• Master assigns reduce task to a free worker
• Reads intermediate K/V pairs from map workers
• Reduce worker sorts and applies some reduce

operation to get the output

!34

J. Bell GMU CS 475 Spring 2018

Fault tolerance via re-execution
• Ideally, fine granularity tasks (more tasks than

machines)
• On worker-failure:

• Re-execute completed and in-progress map
tasks

• Re-executes in-progress reduce tasks
• Commit completion to master

• On master-failure:
• Recover state (master checkpoints in a primary-

backup mechanism)

!35

J. Bell GMU CS 475 Spring 2018

MapReduce in Practice
• Originally presented by Google in 2003
• Widely used today (Hadoop is an open source

implementation)
• Many systems designed to have easier

programming models that compile into
MapReduce code (Pig, Hive)

!36

J. Bell GMU CS 475 Spring 2018

Hadoop: HDFS

!37

HDFS
HDFS NameNode

HDFS DataNode HDFS DataNode

J. Bell GMU CS 475 Spring 2018

HDFS (GFS Review)
• Files are split into blocks (128MB)
• Each block is replicated (default 3 block servers)
• If a host crashes, all blocks are re-replicated

somewhere else
• If a host is added, blocks are rebalanced
• Can get awesome locality by pushing the map

tasks to the nodes with the blocks (just like
MapReduce)

!38

J. Bell GMU CS 475 Spring 2018

Hadoop + ZooKeeper
• Hadoop uses ZooKeeper for automatic failover for

HDFS
• Run a ZooKeeper client on each NameNode

(master)
• Primary NameNode and standbys all maintain

session in ZK, primary holds an ephemeral lock
• If primary doesn’t maintain contact it session

expires, triggering a failure (handled by the client)

!39

J. Bell GMU CS 475 Spring 2018

Hadoop + ZooKeeper

!40

https://issues.apache.org/jira/secure/attachment/12519914/zkfc-design.pdf

https://issues.apache.org/jira/secure/attachment/12519914/zkfc-design.pdf

J. Bell GMU CS 475 Spring 2018

Hadoop + ZooKeeper

!41

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode

ZKClient

NameNode

ZKClient

Primary Secondary

ZK Server ZK ServerZK Server

J. Bell GMU CS 475 Spring 2018

Hadoop + ZooKeeper

!42

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode

ZKClient

ZK Server ZK ServerZK Server

Primary Secondary

timeout
Notification that leader is

gone, secondary
becomes primary

disconnected

Primary

NameNode

ZKClient

Secondary

J. Bell GMU CS 475 Spring 2018

Hadoop + ZooKeeper

!43

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode

ZKClient

NameNode

ZKClient

Primary Secondary

ZK Server ZK ServerZK Server

Note - this is why ZK is helpful here:
we can have the ZK servers partitioned *too* and still

tolerate it the same way

J. Bell GMU CS 475 Spring 2018

Hadoop + ZooKeeper
• Why run ZK client in a different process?
• Why run ZK client on the same machine?
• Can this config still lead to unavailability?
• Can this config lead to inconsistency?

!44

J. Bell GMU CS 475 Spring 2018

Hadoop Ecosystem

!45

