Map Reduce & GFS

CS 475, Spring 2018 Concurrent & Distributed Systems

Review CAP Theorem

- Pick two of three:
 - Consistency: All nodes see the same data at the same time (strong consistency)
 - Availability: Individual node failures do not prevent survivors from continuing to operate
 - Partition tolerance: The system continues to operate despite message loss (from network and/or node failure)
- You can not have all three, ever*
 - If you relax your consistency guarantee, you might be able to guarantee THAT...

Review: CAP Theorem

- C+A: Provide strong consistency and availability, assuming there are no network partitions
- C+P: Provide strong consistency in the presence of network partitions; minority partition is unavailable
- A+P: Provide availability even in presence of partitions; no strong consistency guarantee

Relaxing Consistency

- We can relax two design principles:
 - How stale reads can be
 - The ordering of writes across the replicas

Eventual Consistency

- Allow stale reads, but ensure that reads will eventually reflect the previously written values
 - Eventually: milliseconds, seconds, minutes, hours, years...
- Writes are NOT ordered as executed
 - Allows for conflicts. Consider: Dropbox
- Git is eventually consistent

Announcements

- HW4 Due Friday
- Project is out!!!
 - http://www.jonbell.net/gmu-cs-475-spring-2018/ final-project/
 - (Hey, it could be worse)
- Today:
 - Big data problems
- Additional readings:
 - GFS, MapReduce papers

More data, more problems

- I have a 1TB file
- I need to sort it
- ...My computer can only read 60MB/sec
- . . .
- •
- •
- 1 day later, it's done

More data, more problems

- Think about scale:
 - Google indexes ~20 petabytes of web pages per day (as of 2008!)
 - Facebook has 2.5 petabytes of user data, increases by 15 terabytes/day (as of 2009!)

- Can't I just add 100 nodes and sort my file 100 times faster?
- Not so easy:
 - Sending data to/from nodes
 - Coordinating among nodes
 - Recovering when one node fails
 - Optimizing for locality
 - Debugging

- We begin to answer
 - 1. How do we store the data?
 - 2. How do we compute on this data?s

GFS (Google File System)

- Google apps observed to have specific R/W patterns (usually read recent data, lots of data, etc)
- Normal FS API (POSIX) is constraining (consider: CFS contains a ton of annoying glue to make it work)
- Hence, Google made their own FS

GFS

- Hundreds of thousands of regular servers
- Millions of regular disks
- Failures are normal
 - App bugs, OS bugs
 - Human Error

J. Bell

- Disk failure, memory failure, network failure, etc.
- Huge number of concurrent reads, writes

GFS Workload

- (Relatively) small total number of large files (>100MB) - millions
- Large, streaming reads (reading > 1MB at a time)
- Large, sequential writes that always append to end of a file
- Multiple clients might append concurrently

GFS Design Goals

- Unified FS for all google platforms (e.g. gmail, youtube)
- Data + system availability
- Graceful + transparent failure handling
- Low synchronization overhead
- Exploit parallelism
- High throughput and low latency

GFS Architecture



GFS Architecture

- Single master server (RSM replication to backups)
 - Holds all metadata (in RAM!) namespace, ACL, file-chunk mapping
 - In charge of migrating chunks, GC'ing chunks
- Data stored in 64MB chunks each with some ID
 - Compare to EXT-4's 4KB block
- Thousands of chunk servers
 - Chunks are replicated
 - Chunk servers don't cache anything in RAM, store chunks as regular files

GFS Client

- Makes metadata requests to master server
- Makes chunk requests to chunk servers
- Caches metadata
- Does not cache data (chunks)
 - Google's workload (streaming reads, appending writes) doesn't benefit from caching, so why bother with consistency nightmare

GFS Reads

- Client asks master for chunk ID, chunk version number, and location of replicas given a file name
- By default, GFS replicates each chunk to 3 servers
- Client sends read request to closest (in network topology) chunk server

GFS Writes

- Client asks master for replicas storing a chunk (one is arbitrarily declared primary)
- Client sends write request to all replicas
- Each replica acknowledges write to primary replica
- Primary coordinates commit between all of the replicas
- On success, primary replies to client

GFS Chunk Primaries

- There needs to be exactly one primary for each chunk
- GFS ensures this using leases
 - Master selects a chunk server and grants it a lease
 - The chunk server holds the lease for T seconds, and is primary
 - Chunk server can refresh lease endlessly
 - If chunk server fails to refresh it, falls out of being primary
- Like a lock, but needs to be renewed (like with a heart beat)

GFS Consistency

- Metadata changes are atomic. Occur only on a single machine, so no distributed issues.
- Changes to data are ordered as arbitrarily chosen by the primary chunk server for a chunk

GFS Summary

- Limitations:
 - Master is a huge bottleneck
 - Recovery of master is slow
- Lots of success at Google
- Performance isn't great for all apps
- Consistency needs to be managed by apps
- Replaced in 2010 by Google's Colossus system eliminates master

- Lots of these challenges re-appear, regardless of our specific problem
 - How to split up the task
 - How to put the results back together
 - How to store the data (GFS)
- Enter, MapReduce

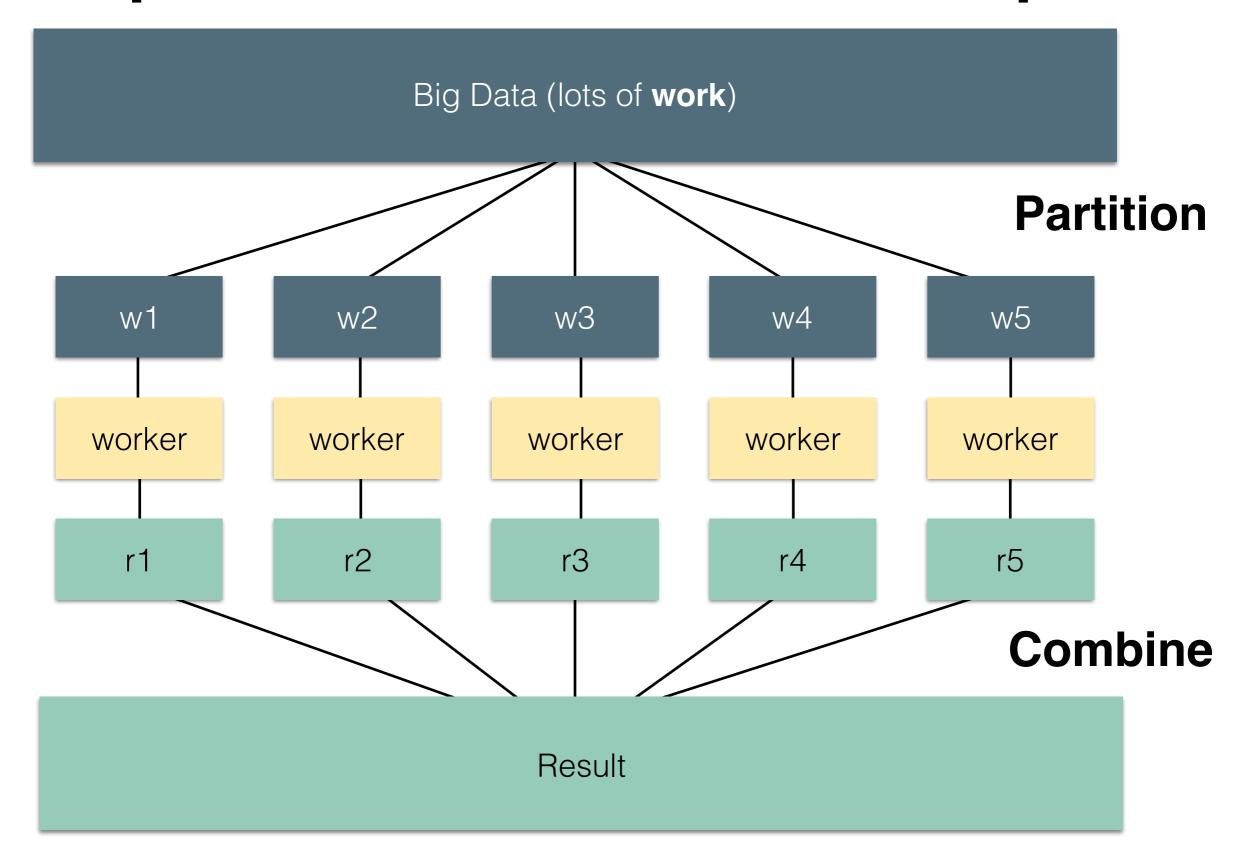
MapReduce

- A programming model for large-scale computations
 - Takes large inputs, produces output
 - No side-effects or persistent state other than that input and output
- Runtime library
 - Automatic parallelization
 - Load balancing
 - Locality optimization
 - Fault tolerance

MapReduce

- Partition data into splits (map)
- Aggregate, summarize, filter or transform that data (reduce)
- Programmer provides these two methods

MapReduce: Divide & Conquer

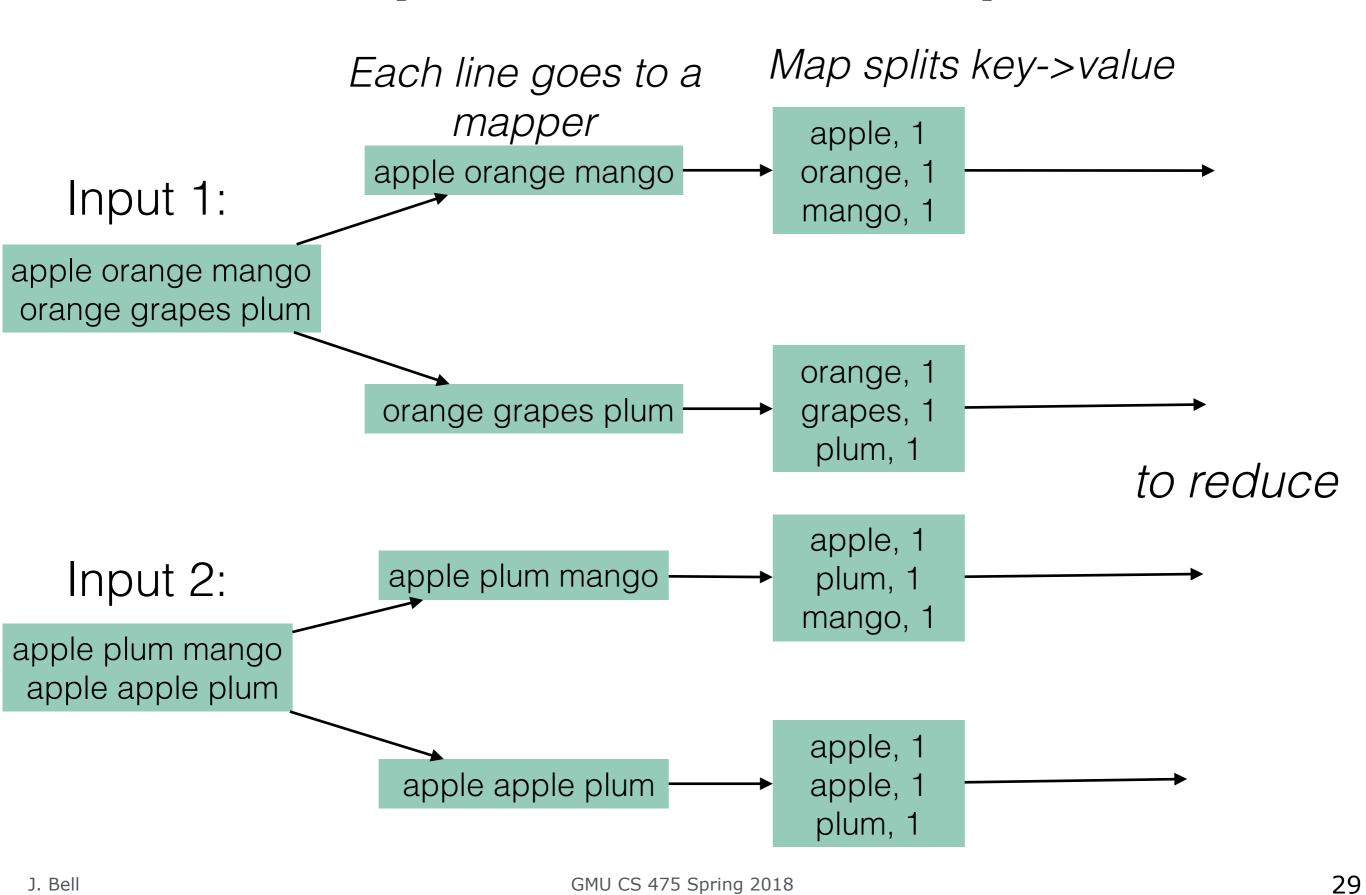


27

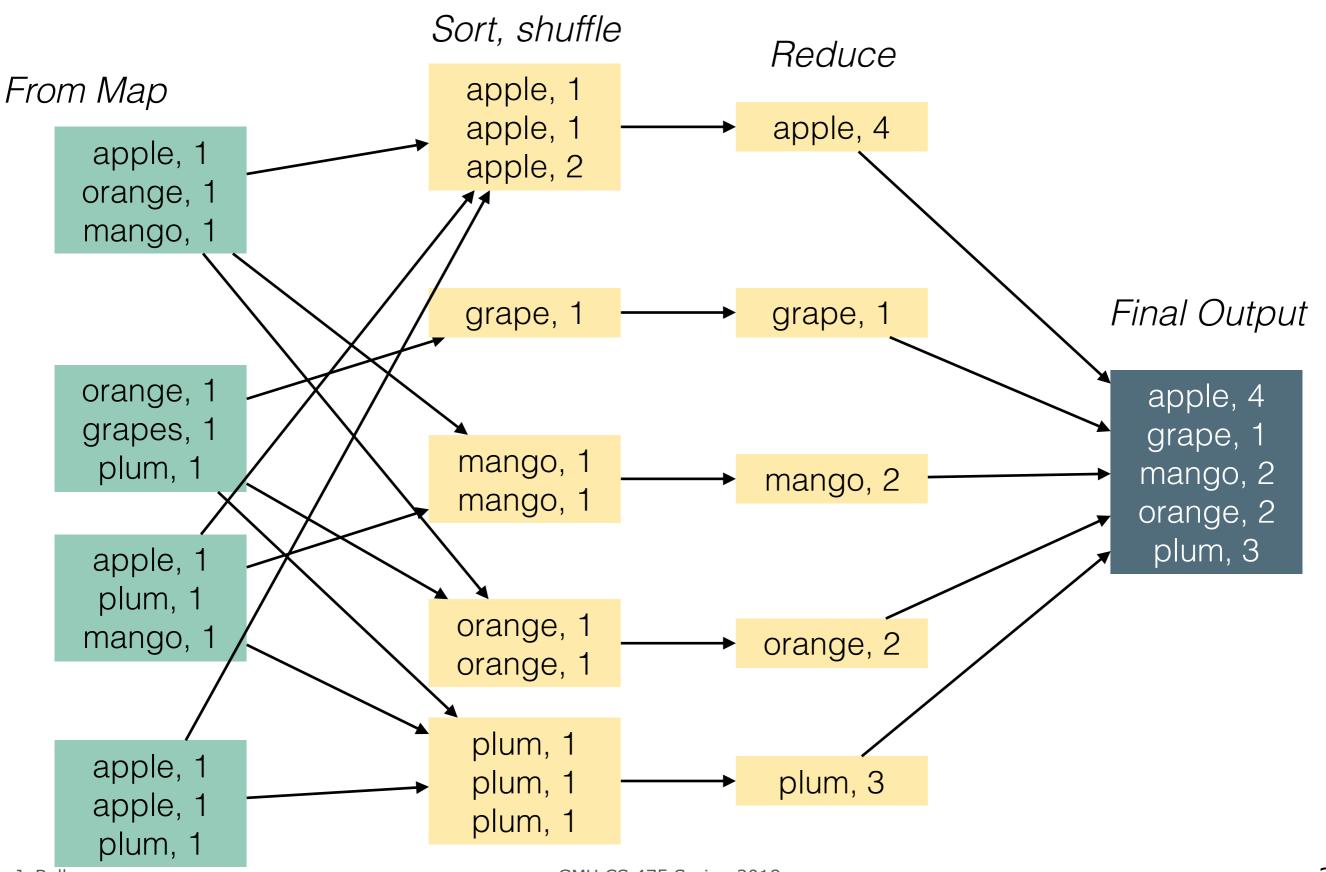
MapReduce: Example

- Calculate word frequencies in documents
- Input: files, one document per record
- Map parses documents into words
 - Key Word
 - Value Frequency of word
- · Reduce: compute sum for each key

MapReduce: Example



MapReduce: Example



MapReduce Applications

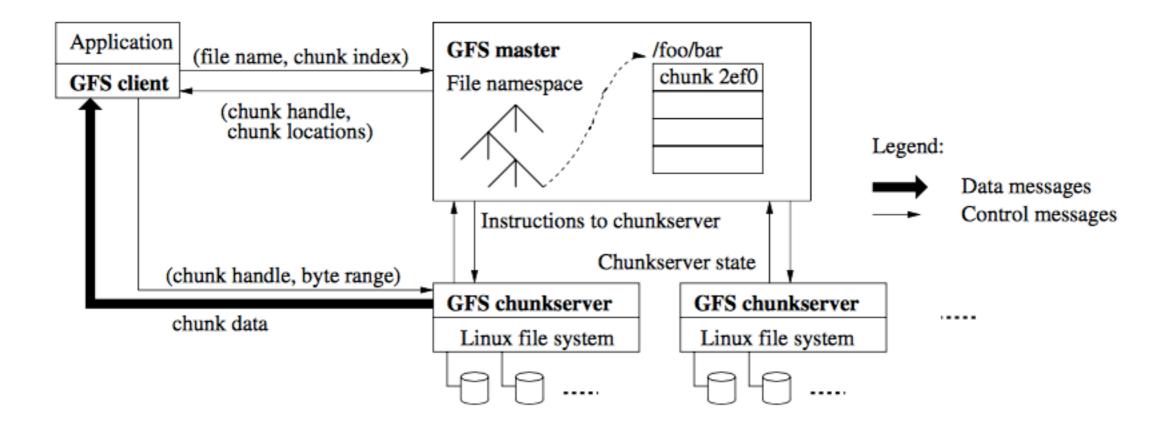
Distributed grep

J. Bell

- Distributed clustering
- Web link graph traversal
- Detecting duplicate web pages

MapReduce: Implementation

Each worker node is also a GFS chunk server!



MapReduce: Scheduling

- One master, many workers
- Input data split into M map tasks (typically 64MB ea)
- R reduce tasks
- Tasks assigned to works dynamically; stateless and idempotent -> easy fault tolerance for workers
- Typical numbers:
 - 200,000 map tasks, 4,000 reduce tasks across 2,000 workers

MapReduce: Scheduling

- Master assigns map task to a free worker
 - Prefer "close-by" workers for each task (based on data locality)
 - Worker reads task input, produces intermediate output, stores locally (K/V pairs)
- Master assigns reduce task to a free worker
 - Reads intermediate K/V pairs from map workers
 - Reduce worker sorts and applies some reduce operation to get the output

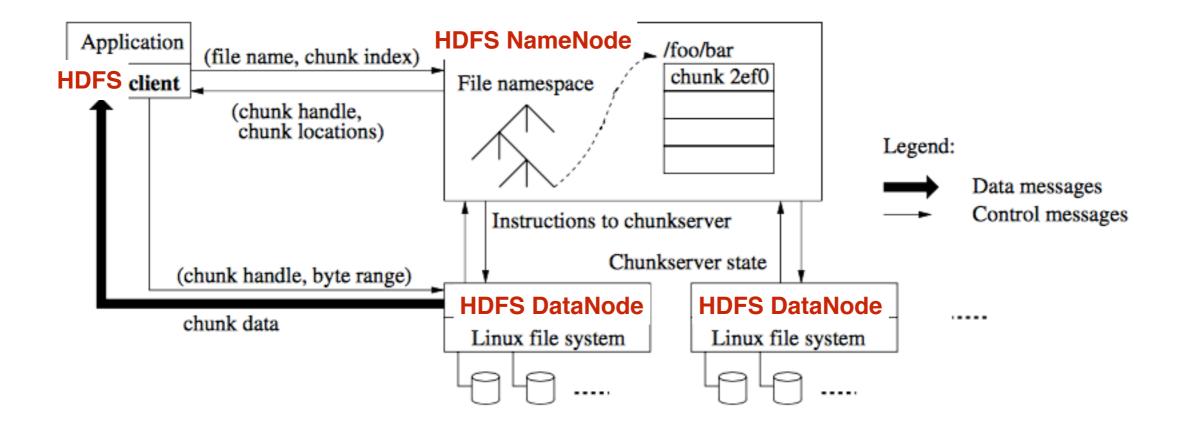
Fault tolerance via re-execution

- Ideally, fine granularity tasks (more tasks than machines)
- On worker-failure:
 - Re-execute completed and in-progress map tasks
 - Re-executes in-progress reduce tasks
 - Commit completion to master
- On master-failure:
 - Recover state (master checkpoints in a primarybackup mechanism)

MapReduce in Practice

- Originally presented by Google in 2003
- Widely used today (Hadoop is an open source implementation)
- Many systems designed to have easier programming models that compile into MapReduce code (Pig, Hive)

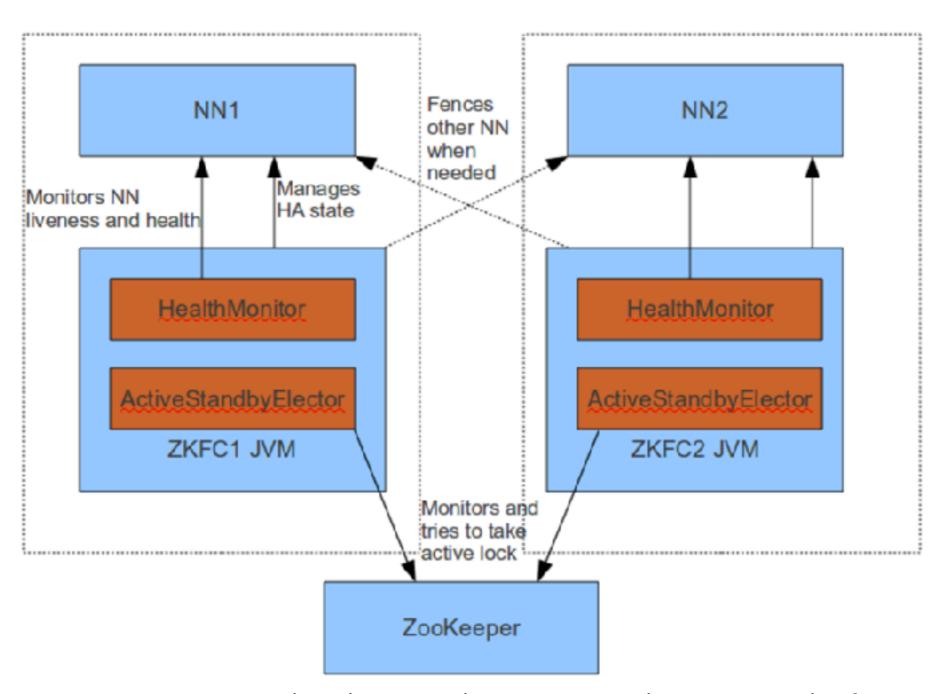
Hadoop: HDFS



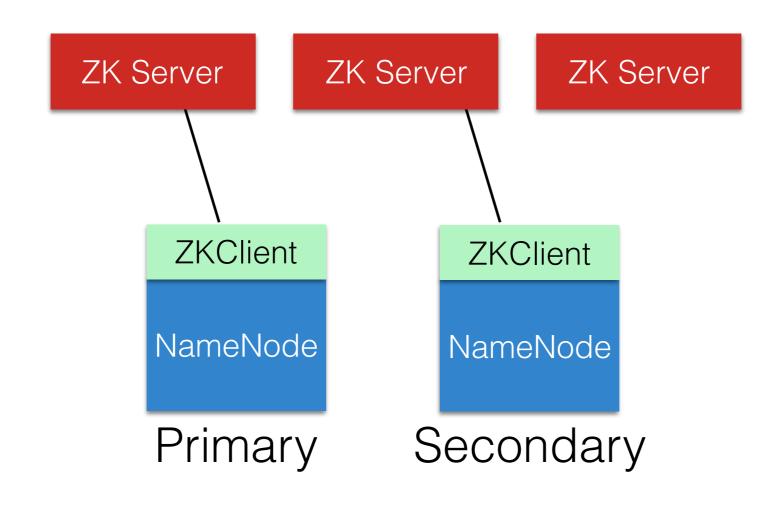
HDFS (GFS Review)

- Files are split into blocks (128MB)
- Each block is replicated (default 3 block servers)
- If a host crashes, all blocks are re-replicated somewhere else
- If a host is added, blocks are rebalanced
- Can get awesome locality by pushing the map tasks to the nodes with the blocks (just like MapReduce)

- Hadoop uses ZooKeeper for automatic failover for HDFS
- Run a ZooKeeper client on each NameNode (master)
- Primary NameNode and standbys all maintain session in ZK, primary holds an ephemeral lock
- If primary doesn't maintain contact it session expires, triggering a failure (handled by the client)

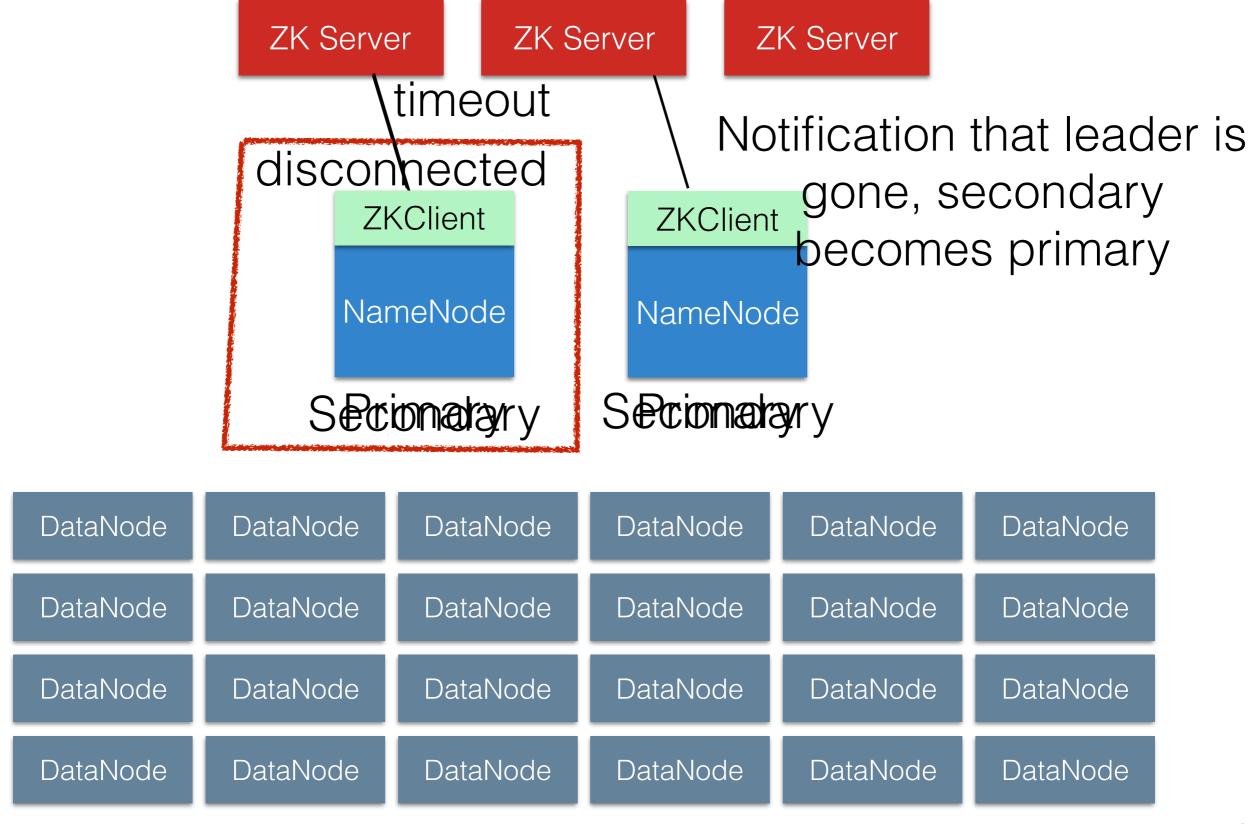


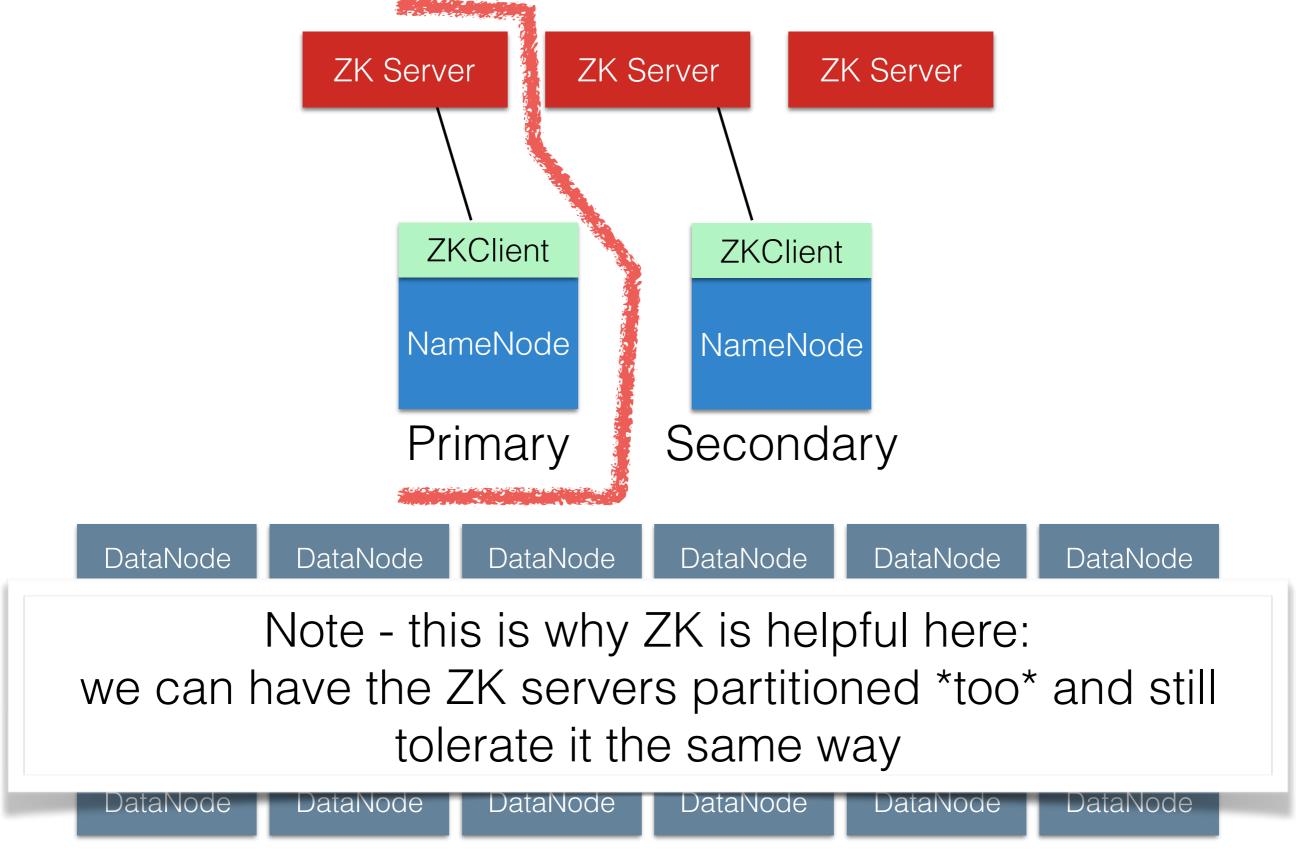
https://issues.apache.org/jira/secure/attachment/12519914/zkfc-design.pdf



DataNode	DataNode	DataNode	DataNode	DataNode	DataNode
DataNode	DataNode	DataNode	DataNode	DataNode	DataNode
DataNode	DataNode	DataNode	DataNode	DataNode	DataNode
DataNode	DataNode	DataNode	DataNode	DataNode	DataNode

41





- Why run ZK client in a different process?
- Why run ZK client on the same machine?
- Can this config still lead to unavailability?
- Can this config lead to inconsistency?

Hadoop Ecosystem

