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Review CAP Theorem
• Pick two of three: 

• Consistency: All nodes see the same data at the same 
time (strong consistency) 

• Availability: Individual node failures do not prevent 
survivors from continuing to operate 

• Partition tolerance: The system continues to operate 
despite message loss (from network and/or node 
failure) 

• You can not have all three, ever*
• If you relax your consistency guarantee, you might be 

able to guarantee THAT…
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Review: CAP Theorem
• C+A: Provide strong consistency and availability, 

assuming there are no network partitions 
• C+P: Provide strong consistency in the presence of 

network partitions; minority partition is unavailable 
• A+P: Provide availability even in presence of 

partitions; no strong consistency guarantee
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Relaxing Consistency
• We can relax two design principles: 

• How stale reads can be 
• The ordering of writes across the replicas
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Eventual Consistency
• Allow stale reads, but ensure that reads will 

eventually reflect the previously written values 
• Eventually: milliseconds, seconds, minutes, 

hours, years… 
• Writes are NOT ordered as executed 

• Allows for conflicts. Consider: Dropbox 
• Git is eventually consistent
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Announcements
• HW4 Due Friday 
• Project is out!!! 

• http://www.jonbell.net/gmu-cs-475-spring-2018/
final-project/ 

• (Hey, it could be worse) 
• Today:  

• Big data problems 
• Additional readings: 

• GFS, MapReduce papers

!6

http://www.jonbell.net/gmu-cs-475-spring-2018/final-project/
http://www.jonbell.net/gmu-cs-475-spring-2018/final-project/
http://www.jonbell.net/gmu-cs-475-spring-2018/final-project-boss-mode/
https://research.google.com/archive/gfs-sosp2003.pdf
https://research.google.com/archive/mapreduce-osdi04.pdf
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More data, more problems
• I have a 1TB file 
• I need to sort it 
• …My computer can only read 60MB/sec 
• … 
• … 
• … 
• 1 day later, it’s done
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More data, more problems
• Think about scale: 

• Google indexes ~20 petabytes of web pages 
per day (as of 2008!) 

• Facebook has 2.5 petabytes of user data, 
increases by 15 terabytes/day (as of 2009!)
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Distributing Computation
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Distributing Computation
• Can't I just add 100 nodes and sort my file 100 

times faster? 
• Not so easy: 

• Sending data to/from nodes 
• Coordinating among nodes 
• Recovering when one node fails 
• Optimizing for locality 
• Debugging
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Distributing Computation
• We begin to answer 

• 1. How do we store the data? 
• 2. How do we compute on this data?s
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GFS (Google File System)
• Google apps observed to have specific R/W 

patterns (usually read recent data, lots of data, etc) 
• Normal FS API (POSIX) is constraining (consider: 

CFS contains a ton of annoying glue to make it 
work) 

• Hence, Google made their own FS
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GFS
• Hundreds of thousands of regular servers 
• Millions of regular disks 
• Failures are normal 

• App bugs, OS bugs 
• Human Error 
• Disk failure, memory failure, network failure, etc 

• Huge number of concurrent reads, writes
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GFS Workload
• (Relatively) small total number of large files 

(>100MB) - millions 
• Large, streaming reads (reading > 1MB at a time) 
• Large, sequential writes that always append to end 

of a file 
• Multiple clients might append concurrently
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GFS Design Goals
• Unified FS for all google platforms (e.g. gmail, 

youtube) 
• Data + system availability 
• Graceful + transparent failure handling 
• Low synchronization overhead 
• Exploit parallelism 
• High throughput and low latency
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GFS Architecture
• Single master server (RSM replication to backups) 

• Holds all metadata (in RAM!) - namespace, ACL, 
file-chunk mapping 

• In charge of migrating chunks, GC’ing chunks 
• Data stored in 64MB chunks each with some ID 

• Compare to EXT-4’s 4KB block 
• Thousands of chunk servers 

• Chunks are replicated 
• Chunk servers don’t cache anything in RAM, store 

chunks as regular files
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GFS Client
• Makes metadata requests to master server 
• Makes chunk requests to chunk servers 
• Caches metadata 
• Does not cache data (chunks) 

• Google’s workload (streaming reads, appending 
writes) doesn’t benefit from caching, so why 
bother with consistency nightmare
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GFS Reads
• Client asks master for chunk ID, chunk version 

number, and location of replicas given a file name 
• By default, GFS replicates each chunk to 3 servers 
• Client sends read request to closest (in network 

topology) chunk server
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GFS Writes
• Client asks master for replicas storing a chunk (one 

is arbitrarily declared primary) 
• Client sends write request to all replicas 
• Each replica acknowledges write to primary replica 
• Primary coordinates commit between all of the 

replicas 
• On success, primary replies to client
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GFS Chunk Primaries
• There needs to be exactly one primary for each chunk 
• GFS ensures this using leases  

• Master selects a chunk server and grants it a lease 
• The chunk server holds the lease for T seconds, 

and is primary 
• Chunk server can refresh lease endlessly 
• If chunk server fails to refresh it, falls out of being 

primary 
• Like a lock, but needs to be renewed (like with a heart 

beat)
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GFS Consistency
• Metadata changes are atomic. Occur only on a 

single machine, so no distributed issues. 
• Changes to data are ordered as arbitrarily chosen 

by the primary chunk server for a chunk
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GFS Summary
• Limitations: 

• Master is a huge bottleneck 
• Recovery of master is slow 

• Lots of success at Google 
• Performance isn't great for all apps 
• Consistency needs to be managed by apps 
• Replaced in 2010 by Google's Colossus system - 

eliminates master
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Distributing Computation
• Lots of these challenges re-appear, regardless of 

our specific problem 
• How to split up the task 
• How to put the results back together 
• How to store the data (GFS) 

• Enter, MapReduce
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MapReduce
• A programming model for large-scale computations 

• Takes large inputs, produces output 
• No side-effects or persistent state other than that 

input and output 
• Runtime library 

• Automatic parallelization 
• Load balancing 
• Locality optimization 
• Fault tolerance
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MapReduce
• Partition data into splits (map) 
• Aggregate, summarize, filter or transform that data 

(reduce) 
• Programmer provides these two methods
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MapReduce: Divide & Conquer
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Combine

Result

r1 r2 r3 r4 r5

worker worker worker worker worker

w1 w2 w3 w4 w5

Partition

Big Data (lots of work)
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MapReduce: Example
• Calculate word frequencies in documents 
• Input: files, one document per record 
• Map parses documents into words 

• Key - Word 
• Value - Frequency of word 

• Reduce: compute sum for each key
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MapReduce: Example
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Input 1:
apple orange mango 
 orange grapes plum

Input 2:
apple plum mango 
 apple apple plum

apple orange mango

 orange grapes plum

 apple apple plum

apple plum mango

apple, 1 
orange, 1 
mango, 1

orange, 1 
grapes, 1 
plum, 1

apple, 1 
plum, 1 

mango, 1

apple, 1 
apple, 1 
plum, 1

Each line goes to a 
mapper

Map splits key->value

to reduce
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MapReduce: Example
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apple, 1 
orange, 1 
mango, 1

orange, 1 
grapes, 1 
plum, 1

apple, 1 
plum, 1 

mango, 1

apple, 1  
apple, 1 
plum, 1

From Map apple, 1 
apple, 1 
apple, 2

grape, 1

mango, 1 
mango, 1

orange, 1 
orange, 1

plum, 1 
plum, 1 
plum, 1

Sort, shuffle

apple, 4

grape, 1

mango, 2

orange, 2

plum, 3

Reduce

apple, 4 
grape, 1 
mango, 2 
orange, 2 
plum, 3

Final Output
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MapReduce Applications
• Distributed grep 
• Distributed clustering 
• Web link graph traversal 
• Detecting duplicate web pages
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MapReduce: Implementation
• Each worker node is also a GFS chunk server!
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MapReduce: Scheduling
• One master, many workers 
• Input data split into M map tasks (typically 64MB 

ea) 
• R reduce tasks 
• Tasks assigned to works dynamically; stateless 

and idempotent -> easy fault tolerance for workers 
• Typical numbers: 

• 200,000 map tasks, 4,000 reduce tasks across 
2,000 workers
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MapReduce: Scheduling
• Master assigns map task to a free worker 

• Prefer "close-by" workers for each task (based on 
data locality) 

• Worker reads task input, produces intermediate 
output, stores locally (K/V pairs) 

• Master assigns reduce task to a free worker 
• Reads intermediate K/V pairs from map workers 
• Reduce worker sorts and applies some reduce 

operation to get the output
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Fault tolerance via re-execution
• Ideally, fine granularity tasks (more tasks than 

machines) 
• On worker-failure: 

• Re-execute completed and in-progress map 
tasks 

• Re-executes in-progress reduce tasks 
• Commit completion to master 

• On master-failure: 
• Recover state (master checkpoints in a primary-

backup mechanism)
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MapReduce in Practice
• Originally presented by Google in 2003 
• Widely used today (Hadoop is an open source 

implementation) 
• Many systems designed to have easier 

programming models that compile into 
MapReduce code (Pig, Hive)
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Hadoop: HDFS

!37

HDFS
HDFS NameNode

HDFS DataNode HDFS DataNode
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HDFS (GFS Review)
• Files are split into blocks (128MB) 
• Each block is replicated (default 3 block servers) 
• If a host crashes, all blocks are re-replicated 

somewhere else 
• If a host is added, blocks are rebalanced 
• Can get awesome locality by pushing the map 

tasks to the nodes with the blocks (just like 
MapReduce)
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Hadoop + ZooKeeper
• Hadoop uses ZooKeeper for automatic failover for 

HDFS 
• Run a ZooKeeper client on each NameNode 

(master) 
• Primary NameNode and standbys all maintain 

session in ZK, primary holds an ephemeral lock 
• If primary doesn’t maintain contact it session 

expires, triggering a failure (handled by the client)
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Hadoop + ZooKeeper

!40

https://issues.apache.org/jira/secure/attachment/12519914/zkfc-design.pdf

https://issues.apache.org/jira/secure/attachment/12519914/zkfc-design.pdf
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Hadoop + ZooKeeper
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DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode

ZKClient

NameNode

ZKClient

Primary Secondary

ZK Server ZK ServerZK Server
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Hadoop + ZooKeeper
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DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode

ZKClient

ZK Server ZK ServerZK Server

Primary Secondary

timeout
Notification that leader is 

gone, secondary 
becomes primary

disconnected

Primary

NameNode

ZKClient

Secondary
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Hadoop + ZooKeeper
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DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode

ZKClient

NameNode

ZKClient

Primary Secondary

ZK Server ZK ServerZK Server

Note - this is why ZK is helpful here: 
we can have the ZK servers partitioned *too* and still 

tolerate it the same way
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Hadoop + ZooKeeper
• Why run ZK client in a different process? 
• Why run ZK client on the same machine? 
• Can this config still lead to unavailability? 
• Can this config lead to inconsistency?
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Hadoop Ecosystem
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