
Distributed Architectures 
& Microservices

CS 475, Spring 2018

Concurrent & Distributed Systems



GFS Architecture



J. Bell GMU CS 475 Spring 2018

GFS Summary
• Limitations: 

• Master is a huge bottleneck 
• Recovery of master is slow 

• Lots of success at Google 
• Performance isn't great for all apps 
• Consistency needs to be managed by apps 
• Replaced in 2010 by Google's Colossus system - 

eliminates master

!3



J. Bell GMU CS 475 Spring 2018

MapReduce: Divide & Conquer

!4

Combine

Result

r1 r2 r3 r4 r5

worker worker worker worker worker

w1 w2 w3 w4 w5

Partition

Big Data (lots of work)



J. Bell GMU CS 475 Spring 2018

Hadoop + ZooKeeper

!5

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode

ZKClient

ZK Server ZK ServerZK Server

Primary Secondary

timeout
Notification that leader is 

gone, secondary 
becomes primary

disconnected

Primary

NameNode

ZKClient

Secondary



J. Bell GMU CS 475 Spring 2018

Hadoop + ZooKeeper

!6

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode

ZKClient

NameNode

ZKClient

Primary Secondary

ZK Server ZK ServerZK Server

Note - this is why ZK is helpful here: 
we can have the ZK servers partitioned *too* and still 

tolerate it the same way



J. Bell GMU CS 475 Spring 2018

Announcements
• Form a team and get started on the project! 

• http://jonbell.net/gmu-cs-475-spring-2018/final-
project/ 

• AutoLab available soon 
• Today: 

• Distributed system architectures

!7

http://jonbell.net/gmu-cs-475-spring-2018/final-project/
http://jonbell.net/gmu-cs-475-spring-2018/final-project/


J. Bell GMU CS 475 Spring 2018

Distributed Systems Abstractions
• Goal: find some way of making our distributed 

system look like a single system 
• Never achievable in practice 
• BUT if we can come up with some model of how 

the world might behave, we can come up with 
some generic solutions that work pretty well 
• And hopefully we can understand how they can 

go wrong

!8



J. Bell GMU CS 475 Spring 2018

Abstractions & Architectures
• We can design architectures that embody some systems 

model, providing some framework code to make it easier 
to get some task done 

• Case study example: web architectures 
• Assumptions: 

• “one” server, many clients 
• Synchronous communication 
• Client is unlikely to be partitioned from a subset of 

servers; likely some subset of servers are partitioned 
from other servers 

• Client is mostly stateless

!9



J. Bell GMU CS 475 Spring 2018

The good old days of web apps

!10

HTTP Request
GET /myApplicationEndpoint HTTP/1.1 
Host: cs.gmu.edu 
Accept: text/html

web server

HTTP Response
HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

<html><head>...

Runs a program

Web Server 
Application

My 
Application 
Backend

Give me /myApplicationEndpoint

Here’s some text to send back

Does whatever it wants



J. Bell GMU CS 475 Spring 2018

Brief history of Backend Development

• In the beginning, you wrote whatever you wanted 
using whatever language you wanted and whatever 
framework you wanted 

• Then… PHP and ASP 
• Languages “designed” for writing backends 
• Encouraged spaghetti code 
• A lot of the web was built on this 

• A whole lot of other languages were also springing 
up in the 90’s… 
• Ruby, Python, JSP

!11



J. Bell GMU CS 475 Spring 2018

Backend Frameworks

!12

Our own backend

Connection to 
FrontendWeb “Front End”

WAN

Logic

Persistent Data

LAN

LAN

• Then: frameworks
• SailsJS, Ruby on Rails, PHP Symfony, 

Python Django, ASP.NET, EJB… 
• MVC - separate presentation, logic and 

persistence



J. Bell GMU CS 475 Spring 2018

Scaling web architectures up
• What happens when we have to use this approach 

to run, say… Facebook? 
• Tons of dynamic content that needs to be updated, 

petabytes of static content (like pictures), users 
physically located all over, lots of stuff to keep track 
of, where do we start?

!13



Real Architectures

External 
Cache

Web 
Servers

App 
Servers

Database 
servers

Internet

Internal 
Cache

Misc 
Services

Clients

N-Tier Web 
Architectures



J. Bell GMU CS 475 Spring 2018

Real Architectures
• For each layer…

• What is it?
• Why?

!15

External 
Cache

Web 
Servers

App 
Servers

Database 
servers

Internet

Internal 
Cache

Misc 
Services

Clients



J. Bell GMU CS 475 Spring 2018

External cache

!16

External 
Cache

Web 
Servers

App 
Servers

Database 
servers

Internet

Internal 
Cache

Misc 
Services

Clients

• What is it? 
• A proxy (e.g. squid, 

apache 
mod_proxy) 

• A content delivery 
network (CDN) e.g. 
Akamai, CloudFlare



J. Bell GMU CS 475 Spring 2018

External cache

!17

External 
Cache

Web 
Servers

App 
Servers

Database 
servers

Internet

Internal 
Cache

Misc 
Services

Clients

• What is it for? 
• Caches outbound data 

• Images, CSS, XML, 
HTML, pictures, 
videos, anything 
static (some stuff 
dynamic maybe) 

• DoS defense 
• Decrease latency - 

might be close to the 
user



J. Bell GMU CS 475 Spring 2018

External cache

!18

External 
Cache

Web 
Servers

App 
Servers

Database 
servers

Internet

Internal 
Cache

Misc 
Services

Clients

• What is it made of? 
• Tons of RAM, fast 

network, physically 
located all over 

• No need for much 
CPU



J. Bell GMU CS 475 Spring 2018

Front-end Tier

!19

External 
Cache

Web 
Servers

App 
Servers

Database 
servers

Internet

Internal 
Cache

Misc 
Services

Clients

• Serves static content 
from disk, generates 
dynamic content by 
dispatching requests 
to app tier 

• Speaks HTTP, HTTPS



J. Bell GMU CS 475 Spring 2018

Application Server Tier

!20

External 
Cache

Web 
Servers

App 
Servers

Database 
servers

Internet

Internal 
Cache

Misc 
Services

Clients

• Serves dynamic pages 
• Provides internal 

services 
• E.g. search, shopping 

cart, account 
management 

• Talks to web tier over.. 
• RPC, REST, CORBA, 

RMI, SOAP, 
XMLRPC… whatever 

• More CPU-bound than 
any other tier



J. Bell GMU CS 475 Spring 2018

Database Tier

!21

External 
Cache

Web 
Servers

App 
Servers

Database 
servers

Internet

Internal 
Cache

Misc 
Services

Clients

• Relational or non-
relational DB 
• PostgreSQL, 

MySQL, Mongo, 
Cassandra, etc 

• Most storage



J. Bell GMU CS 475 Spring 2018

Internal Caching Tier

!22

External 
Cache

Web 
Servers

App 
Servers

Database 
servers

Internet

Internal 
Cache

Misc 
Services

Clients

• Has tons of memory, right 
near the app servers to 
cache application-level 
(dynamic) objects



J. Bell GMU CS 475 Spring 2018

Internal Services Tier

!23

External 
Cache

Web 
Servers

App 
Servers

Database 
servers

Internet

Internal 
Cache

Misc 
Services

Clients

• Coordination services 
• E.g. time keeping 

• Monitoring & maintenance 
services



Real Architectures

External 
Cache

Web 
Servers

App 
Servers

Database 
servers

Internet

Internal 
Cache

Misc 
Services

Clients

N-Tier Web 
Architectures

Separate out responsibilities with 
abstractions: each tier cares about a 
different aspect of getting the client 

their response



J. Bell GMU CS 475 Spring 2018

How do we build big apps?

!25

Our Cool App

Frontend

Backend 
Server

Database

What happens when we want to add more functionality to our 
backend?

Basic todo app



J. Bell GMU CS 475 Spring 2018

How do we build big apps?

!26

Our Cool App

Frontend

Backend Server

Database

What happens when we add more functionality?

Basic todo app with new 
feature to email todo 

reminders



J. Bell GMU CS 475 Spring 2018

How do we build big apps?

!27

Our Cool App

Frontend

Backend Server

Database

But we’re smart, and learned about modules, so our backend 
isn’t total spaghetti but rather…

Basic todo app with new 
feature to email todo 

reminders PLUS something 
to find events on Facebook 
and create Todos for them



J. Bell GMU CS 475 Spring 2018

How do we build big apps?

!28

Our Cool App

Frontend

Backend Server

Database

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Sweet: Our backend is not an unorganized mess, but 
instead just modules. Now how do we scale it? Run 

multiple backends?



J. Bell GMU CS 475 Spring 2018

Now how do we scale it?

!29

Our Cool App

Backend Server

Database

Backend Server Backend Server

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

We run multiple copies of the backend, each with each of 
the modules

Frontend



J. Bell GMU CS 475 Spring 2018

What's wrong with this picture?
• This is called the “monolithic” 

app 
• If we need 100 servers… 
• Each server will have to run 

EACH module 
• What if we need more of 

some modules than others? 
• How do we update individual 

modules? 
• Do all modules need to use 

the same DB and language, 
runtime etc?

!30

Our Cool App

Backend Server

Database

Backend Server Backend Server
Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Frontend



J. Bell GMU CS 475 Spring 2018

Microservices

!31

Our Cool App

Frontend

“Dumb” 
Backend

Mod 1

REST 
service

Database

Mod 2

REST 
service

Database

Mod 3

REST 
service

Database

Mod 4

REST 
service

Database

Mod 5

REST 
service

Database

Mod 6

REST 
service

Database

AJAX

Todos
NodeJS, Firebase

Mailer
Java, MySQL

Accounts
Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase



J. Bell GMU CS 475 Spring 2018

What’s good about this picture?
• Spaghetti is contained 
• Components can be developed totally 

independently 
• Different languages, runtimes, OS, hardware, DB 

• Components can be replaced easily 
• Could even change technology entirely (or use 

legacy service) 
• Can scale individual components at different rates 

• Components may require different levels of 
resources

!32

Our Cool App

Frontend

“Dumb” 
Backend

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

AJAX

Todos

NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase

Mod 4

REST service

Database

Search Engine

Java, Neo4J

Mod 4

REST service

Database

Search Engine

Java, Neo4J

Mod 4

REST service

Database

Search Engine

Java, Neo4J



J. Bell GMU CS 475 Spring 2018

Requirements for successful microservices

• 1 component = 1 service 
• 1 business use case = 1 component 
• Smart endpoints, dumb pipes 
• Decentralized governance 
• Decentralized data management 
• Infrastructure automation 
• Design for failure 
• Evolutionary design

!33



J. Bell GMU CS 475 Spring 2018

How big is a component?
• Metaphor: Building a stereo system 
• Components are independently replaceable 
• Components are independently updatable 
• This means that they can be also independently 

developed, tested, etc 
• Components can be built as: 

• Library (e.g. module) 
• Service (e.g. web service)

!34



J. Bell GMU CS 475 Spring 2018

Components as Libraries or Services?

• Microservices says 1 service per component 
• This means that we can: 

• Develop them independently 
• Upgrade the independently 
• Have ZERO coupling between components, 

aside from their shared interface

!35



J. Bell GMU CS 475 Spring 2018

Organization around business capabilities

!36

Frontend

Backend

Database

Classic teams:
1 team per “tier”Orders, shipping, catalog

Orders, shipping, catalog

Orders, shipping, catalog



J. Bell GMU CS 475 Spring 2018

Organization around business capabilities

!37

Orders

Shipping

Catalog

Example: Amazon

Teams can focus on one 
business task 

And be responsible 
directly to users

“Full Stack”

“2 pizza teams”



Real Architectures

External 
Cache

Web 
Servers

App 
Servers

Database 
servers

Internet

Internal 
Cache

Misc 
Services

Clients

N-Tier Web 
Architectures

Separate out responsibilities with 
abstractions: each tier cares about a 
different aspect of getting the client 

their response



J. Bell GMU CS 475 Spring 2018

Abstracting the tiers
• Take, for instance, this internal cache 
• Can we build one really good internal cache, and 

use it for all of our problems? 
• What is a reasonable model for the cache? 

• Partition: yes (get more RAM to use from other 
servers) 

• Replicate: NO (don’t care about crash-failures) 
• Consistency: Problem shouldn’t arise (aside from 

figuring out keys)

!39



J. Bell GMU CS 475 Spring 2018

How much more can we abstract our 
system?

• At its most basic… what does a program in a distributed 
system look like? 
• It runs concurrently on multiple nodes 
• Those nodes are connected by some network (which 

surely isn’t perfectly reliable) 
• There is no shared memory or clock 

• So… 
• Knowledge can be localized to a node 
• Nodes can fail/recover independently 
• Messages can be delayed or lost 
• Clocks are not necessarily synchronized -> hard to identify 

global order

!40



J. Bell GMU CS 475 Spring 2018

Back to reality
• That’s a little TOO abstract - given that system, how 

can we define a good way to build one? 
• In practice, we need to make assumptions about: 

• Node capabilities, and how they fail 
• Communication links, and how they fail 
• Properties of the overall system (e.g. 

assumptions about time and order)

!41



J. Bell GMU CS 475 Spring 2018

Designing and Building Distributed Systems

To help design our algorithms and systems, we tend to 
leverage abstractions and models to make assumptions

!42

St
re

ng
th

System model

Synchronous

Asynchronous

Failure Model

Crash-fail

Partitions

Byzantine

Consistency Model
Eventual

Sequential

Generally: Stronger assumptions -> worse performance 
Weaker assumptions -> more complicated



J. Bell GMU CS 475 Spring 2018

Byzantine Failures

!43

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

Set A=5

“OK!”

The robot devil will return in lecture 23



J. Bell GMU CS 475 Spring 2018

Timing & Ordering Assumptions
• No matter what, there will be some latency between 

nodes processing the same thing 
• What model do we assume though? 
• Synchronous 

• Processes execute in lock-step 
• We (the designers) have a known upper bound on 

message transmission delay 
• Each process (somehow) maintains an accurate clock 

• Asynchronous 
• Opposite - processes can run out of order, network 

arbitrarily delayed

!44



J. Bell GMU CS 475 Spring 2018

Modeling network transmissions
• Assuming how long it can take a message to be 

delivered helps us figure out what a failure is 
• Assume (for instance), messages are always 

delivered (and never lost) within 1 sec of being 
sent 

• Now, if no response received after 2 sec, we know 
remote host failed 

• Typically NOT reasonable assumptions

!45


