
Exam review
CS 475, Spring 2018

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2018

Course Topics
• This course will teach you how and why to build

distributed systems
• Distributed System is “a collection of independent

computers that appears to its users as a single
coherent system”

• This course will give you theoretical knowledge of
the tradeoffs that you’ll face when building
distributed systems

!2

J. Bell GMU CS 475 Spring 2018

Course Topics

!3

How do I run multiple things
at once on my computer?

How do I run a big task
across many computers?

Concurrency, first half of course

Distributed Systems, second half
of course

J. Bell GMU CS 475 Spring 2018

Concurrency
• Goal: do multiple things, at once, coordinated, on

one computer
• Update UI
• Fetch data
• Respond to network requests
• Improve responsiveness, scalability

• Recurring problems:
• Coordination: what is shared, when, and how?

!4

J. Bell GMU CS 475 Spring 2018

Why expand to distributed systems?

• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

!5

“Distributed Systems for Fun and Profit”, Takada

J. Bell GMU CS 475 Spring 2018

Distributed Systems Goals
• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

“the ability of a system, network, or
process, to handle a growing

amount of work in a capable manner
or its ability to be enlarged to
accommodate that growth.”

!6

“Distributed Systems for Fun and Profit”, Takada

J. Bell GMU CS 475 Spring 2018

Distributed Systems Goals
• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

!7

“is characterized by the amount of
useful work accomplished by a

computer system compared to the
time and resources used.”

J. Bell GMU CS 475 Spring 2018

Distributed Systems Goals
• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

!8

“The state of being latent; delay, a
period between the initiation of
something and the it becoming

visible.”

J. Bell GMU CS 475 Spring 2018

Distributed Systems Goals
• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

!9

“the proportion of time a system is in
a functioning condition. If a user

cannot access the system, it is said
to be unavailable.”

Availability = uptime / (uptime + downtime).

Availability % Downtime/year
90% >1 month
99% < 4 days

99.9% < 9 hours
99.99% <1 hour
99.999% 5 minutes

99.9999% 31 seconds

Often measured in “nines”

J. Bell GMU CS 475 Spring 2018

Distributed Systems Goals
• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

!10

“ability of a system to behave in a
well-defined manner once faults

occur”

What kind of faults?

Disks fail
Power supplies fail

Power goes out

Networking fails
Security breached

Datacenter goes offline

J. Bell GMU CS 475 Spring 2018

More machines, more problems

• PLUS, the network may be:
• Unreliable
• Insecure
• Slow
• Expensive
• Limited

!11

J. Bell GMU CS 475 Spring 2018

Constraints
• Number of nodes
• Distance between nodes

!12

J. Bell GMU CS 475 Spring 2018

Constraints
• Number of nodes
• Distance between nodes

!13
DC

NY

LONDON

SFEven if cross-city links are fast and cheap (are they?)
Still that pesky speed of light…

J. Bell GMU CS 475 Spring 2018

Recurring Solution #1: Partitioning

!14

A B

All accesses go to single server

J. Bell GMU CS 475 Spring 2018

Recurring Solution #1: Partitioning

• Divide data up in some (hopefully logical) way
• Makes it easier to process data concurrently

(cheaper reads)

!15

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…

Z]

Each server has 50% of data, limits
amount of processing per server.

Even if 1 server goes down, still
have 50% of the data online.

J. Bell GMU CS 475 Spring 2018

Recurring Solution #2: Replication

!16

A B

All accesses go to single server

J. Bell GMU CS 475 Spring 2018

Recurring Solution #2: Replication

!17

A B

Entire data set is copied

A B

J. Bell GMU CS 475 Spring 2018

Recurring Solution #2: Replication

• Improves performance:
• Client load can be evenly shared between

servers
• Reduces latency: can place copies of data

nearer to clients
• Improves availability:

• One replica fails, still can serve all requests from
other replicas

!18

J. Bell GMU CS 475 Spring 2018

Partitioning + Replication

!19

A B

J. Bell GMU CS 475 Spring 2018

Partitioning + Replication

!20

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…

Z]

J. Bell GMU CS 475 Spring 2018

Partitioning + Replication

!21

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…

Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B
[O…
Z]

DC NYC

LondonSF

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…
Z]

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…
Z]

A
[0…
100]

B [A…
N]

A
[101..
200]

B
[O…
Z]

J. Bell GMU CS 475 Spring 2018

Conventional Hashing + Sharding

• In practice, might use an off-the-shelf hash
function, like sha1

• sha1(url) -> 160 bit hash result % 20 -> server ID
(assuming 20 servers)

• But what happens when we add or remove a
server?
• Data is stored on what was the right server, but

now that the number of servers changed, the
right server changed too!

!22

J. Bell GMU CS 475 Spring 2018

Conventional Hashing

!23

Assume we have 10 keys, all integers

server 0 server 1 server 2 server 3

Adding a new server

0, 3, 6, 9 1, 4, 7 2, 5, 8

J. Bell GMU CS 475 Spring 2018

Conventional Hashing

!24

Assume we have 10 keys, all integers

server 0 server 1 server 2 server 3

0, 4, 8 1, 5, 9 2, 6 3, 7

Adding a new server

8/10 keys had to be reshuffled!
Expensive!

J. Bell GMU CS 475 Spring 2018

Consistent Hashing
• Problem with regular hashing: very sensitive to

changes in the number of servers holding the data!
• Consistent hashing will require on average that

only K/n keys need to be remapped for K keys with
n different slots (in our case, that would have been
10/4 = 2.5 [compare to 8])

!25

J. Bell GMU CS 475 Spring 2018

Consistent Hashing
• Construction:

• Assign each of C hash buckets to random points
on mod 2n circle, where hash key size = n

• Map object to pseudo-random position on circle
• Hash of object is the closest clockwise bucket

!26

0

4

8

12

Example: hash key size is 16

Each is a value of hash % 16

Each is a bucket

Example: bucket with key 9?

9

J. Bell GMU CS 475 Spring 2018

Consistent Hashing
It is relatively smooth: adding a new bucket doesn't
change that much

!27

0

4

8

12

Add new bucket: only
changes location of keys

7,8,9,10

Delete bucket: only
changes location of keys

1,2,3

J. Bell GMU CS 475 Spring 2018

Recurring Problem: Replication

• Replication solves some problems, but creates a
huge new one: consistency

!28

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

OK, we obviously need to actually do something here to
replicate the data… but what?

J. Bell GMU CS 475 Spring 2018

Sequential Consistency

!29

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

Set A=5

“OK!”

5

J. Bell GMU CS 475 Spring 2018

Availability
• Our protocol for sequential consistency does NOT

guarantee that the system will be available!

!30

A B A B

Set A=5

6 7 765

Read A

Set A=5

J. Bell GMU CS 475 Spring 2018

Consistent + Available

!31

A B A B

Set A=5

6 7 765

“OK”! “5”!

Set A=5

Read A

Assume
replica failed

J. Bell GMU CS 475 Spring 2018

Still broken...

!32

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume

replica failed

Read A “6”!

J. Bell GMU CS 475 Spring 2018

Network Partitions
• The communication links between nodes may fail

arbitrarily
• But other nodes might still be able to reach that

node

!33

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume

replica failed

Read A “6”!

J. Bell GMU CS 475 Spring 2018

CAP Theorem
• Pick two of three:

• Consistency: All nodes see the same data at the same
time (strong consistency)

• Availability: Individual node failures do not prevent
survivors from continuing to operate

• Partition tolerance: The system continues to operate
despite message loss (from network and/or node failure)

• You can not have all three, ever*
• If you relax your consistency guarantee (we’ll talk about

in a few weeks), you might be able to guarantee THAT…

!34

J. Bell GMU CS 475 Spring 2018

CAP Theorem
• C+A: Provide strong consistency and availability,

assuming there are no network partitions
• C+P: Provide strong consistency in the presence of

network partitions; minority partition is unavailable
• A+P: Provide availability even in presence of

partitions; no strong consistency guarantee

!35

J. Bell GMU CS 475 Spring 2018

Still broken...

!36

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

Set A=5

“OK!”

The robot devil will return in lecture 23

J. Bell GMU CS 475 Spring 2018

Agreement
• In distributed systems, we have multiple nodes that

need to all agree that some object has some state
• Examples:

• Who owns a lock
• Whether or not to commit a transaction
• The value of a file

!37

J. Bell GMU CS 475 Spring 2018

Agreement Generally
• Most distributed systems problems can be reduced to

this one:
• Despite being separate nodes (with potentially

different views of their data and the world)…
• All nodes that store the same object O must apply all

updates to that object in the same order (consistency)
• All nodes involved in a transaction must either commit

or abort their part of the transaction (atomicity)
• Easy?

• … but nodes can restart, die or be arbitrarily slow
• … and networks can be slow or unreliable too

!38

J. Bell GMU CS 475 Spring 2018

Properties of Agreement
• Safety (correctness)

• All nodes agree on the same value (which was
proposed by some node)

• Liveness (fault tolerance, availability)
• If less than N nodes crash, the rest should still

be OK

!39

J. Bell GMU SWE 622 Spring 2017

1-Phase Commit

• Naive protocol: coordinator broadcasts out
“commit!” continuously until participants all say
“OK!”

• Problem: what happens when a participants fails
during commit? How do the other participants know
that they shouldn’t have really committed and they
need to abort?

 40

2PC Example
Coordinator

(client or 3rd party)
Participant

Goliath National
Participant

Duke & Duke
transaction
.commit() prepare

prepare
respon

seGNB

responseD&D If we can commit, then lock
our customer, vote “yes”outcome

outcome
If everyone can commit, then

outcome == commit, else
abort

J. Bell GMU CS 475 Spring 2018

Timeouts in 2PC
• Example:

• Coordinator times out waiting for Goliath National
Bank’s response

• Bank times out waiting for coordinator’s outcome
message

• Causes?
• Network
• Overloaded hosts
• Both are very realistic…

!42

J. Bell GMU CS 475 Spring 2018

3 Phase Commit
• Goal: Eliminate this specific failure from blocking

liveness

!43

Coordinator

Participant A

Participant B

Participant C

Participant D

Voted yes

Voted yesX
X Heard back “commit”

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

J. Bell GMU CS 475 Spring 2018

3 Phase Commit
• Goal: Avoid blocking on node failure
• How?

• Think about how 2PC is better than 1PC
• 1PC means you can never change your mind or have a

failure after committing
• 2PC still means that you can’t have a failure after

committing (committing is irreversible)
• 3PC idea:

• Split commit/abort into 2 sub-phases
• 1: Tell everyone the outcome
• 2: Agree on outcome

• Now: EVERY participant knows what the result will be
before they irrevocably commit!

!44

J. Bell GMU CS 475 Spring 2018

3PC Example

!45

Coordinator Participants (A,B,C,D)

Soliciting
votes

prepare

respon
se

pre-commitCommit
authorized
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Timeout causes abortTimeout causes
abort

Timeout causes
abort

Timeout causes commit

J. Bell GMU CS 475 Spring 2018

Partitions

!46

Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Network Partition!!!Prepared to commitPrepared to commitPrepared to commit

Timeout behavior: abortTimeout behavior:
Commit!

Commit Authorized

Committed Aborted Aborted Aborted

J. Bell GMU CS 475 Spring 2018

Can we fix it?
• Short answer: No.
• Fischer, Lynch & Paterson (FLP) Impossibility

Result:
• Assume that nodes can only fail by crashing,

network is reliable but can be delayed arbitrarily
• Then, there can not be a deterministic algorithm

for the consensus problem subject to these
failures

!47

J. Bell GMU CS 475 Spring 2018

FLP - Intuition
• Why can’t we make a protocol for consensus/

agreement that can tolerate both partitions and
node failures?

• To tolerate a partition, you need to assume that
eventually the partition will heal, and the network
will deliver the delayed packages

• But the messages might be delayed forever
• Hence, your protocol would not come to a result,

until forever (it would not have the liveness
property)

!48

J. Bell GMU CS 475 Spring 2018

ZooKeeper - Guarantees
• Liveness guarantees: if a majority of ZooKeeper

servers are active and communicating the service
will be available

• Durability guarantees: if the ZooKeeper service
responds successfully to a change request, that
change persists across any number of failures as
long as a quorum of servers is eventually able to
recover

!49

GFS Architecture

J. Bell GMU CS 475 Spring 2018

Hadoop + ZooKeeper

!51

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode

ZKClient

ZK Server ZK ServerZK Server

Primary Secondary

timeout
Notification that leader is

gone, secondary
becomes primary

disconnected

Primary

NameNode

ZKClient

Secondary

J. Bell GMU CS 475 Spring 2018

Example Threat: Web Server

!52

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?Do I trust that this response

really came from the server?

HTTP Request

HTTP Response

malicious actor
“black hat”

Might be “man in the middle”
that intercepts requests and
impersonates user or server.

J. Bell GMU CS 475 Spring 2018

Symmetric vs Asymmetric Crypto

!53

Symmetric Crypto Asymmetric Crypto

Requires a pre-
shared secret Yes No

Relative speed Very fast Very slow

