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Course Topics
• This course will teach you how and why to build 

distributed systems 
• Distributed System is “a collection of independent 

computers that appears to its users as a single 
coherent system” 

• This course will give you theoretical knowledge of 
the tradeoffs that you’ll face when building 
distributed systems
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Course Topics

!3

How do I run multiple things 
at once on my computer?

How do I run a big task 
across many computers?

Concurrency, first half of course

Distributed Systems, second half 
of course
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Concurrency
• Goal: do multiple things, at once, coordinated, on 

one computer 
• Update UI 
• Fetch data 
• Respond to network requests 
• Improve responsiveness, scalability 

• Recurring problems: 
• Coordination: what is shared, when, and how?

!4
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Why expand to distributed systems?

• Scalability 
• Performance 
• Latency 
• Availability 
• Fault Tolerance

!5

“Distributed Systems for Fun and Profit”, Takada
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Distributed Systems Goals
• Scalability
• Performance 
• Latency 
• Availability 
• Fault Tolerance

“the ability of a system, network, or 
process, to handle a growing 

amount of work in a capable manner 
or its ability to be enlarged to 
accommodate that growth.”

!6

“Distributed Systems for Fun and Profit”, Takada
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Distributed Systems Goals
• Scalability 
• Performance
• Latency 
• Availability 
• Fault Tolerance

!7

“is characterized by the amount of 
useful work accomplished by a 

computer system compared to the 
time and resources used.”
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Distributed Systems Goals
• Scalability 
• Performance 
• Latency
• Availability 
• Fault Tolerance
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“The state of being latent; delay, a 
period between the initiation of 
something and the it becoming 

visible.”
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Distributed Systems Goals
• Scalability 
• Performance 
• Latency 
• Availability
• Fault Tolerance
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“the proportion of time a system is in 
a functioning condition. If a user 

cannot access the system, it is said 
to be unavailable.”

Availability = uptime / (uptime + downtime).

Availability % Downtime/year
90% >1 month
99% < 4 days

99.9% < 9 hours
99.99% <1 hour
99.999% 5 minutes

99.9999% 31 seconds

Often measured in “nines”
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Distributed Systems Goals
• Scalability 
• Performance 
• Latency 
• Availability 
• Fault Tolerance

!10

“ability of a system to behave in a 
well-defined manner once faults 

occur”

What kind of faults?

Disks fail
Power supplies fail

Power goes out

Networking fails
Security breached

Datacenter goes offline
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More machines, more problems

• PLUS, the network may be: 
• Unreliable 
• Insecure 
• Slow 
• Expensive 
• Limited

!11
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Constraints
• Number of nodes 
• Distance between nodes

!12
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Constraints
• Number of nodes 
• Distance between nodes

!13
DC

NY

LONDON

SFEven if cross-city links are fast and cheap (are they?) 
Still that pesky speed of light…
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Recurring Solution #1: Partitioning

!14

A B

All accesses go to single server
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Recurring Solution #1: Partitioning

• Divide data up in some (hopefully logical) way 
• Makes it easier to process data concurrently 

(cheaper reads) 
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A 
[0…
100]

B [A…
N]

A 
[101.. 
200]

B 
[O…

Z]

Each server has 50% of data, limits 
amount of processing per server. 

Even if 1 server goes down, still 
have 50% of the data online.
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Recurring Solution #2: Replication

!16

A B

All accesses go to single server
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Recurring Solution #2: Replication

!17

A B

Entire data set is copied

A B
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Recurring Solution #2: Replication

• Improves performance: 
• Client load can be evenly shared between 

servers 
• Reduces latency: can place copies of data 

nearer to clients 
• Improves availability: 

• One replica fails, still can serve all requests from 
other replicas

!18
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Partitioning + Replication

!19

A B
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Partitioning + Replication
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Partitioning + Replication
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Conventional Hashing + Sharding

• In practice, might use an off-the-shelf hash 
function, like sha1 

• sha1(url) -> 160 bit hash result % 20 -> server ID 
(assuming 20 servers) 

• But what happens when we add or remove a 
server? 
• Data is stored on what was the right server, but 

now that the number of servers changed, the 
right server changed too!

!22
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Conventional Hashing

!23

Assume we have 10 keys, all integers

server 0 server 1 server 2 server 3

Adding a new server

0, 3, 6, 9 1, 4, 7 2, 5, 8
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Conventional Hashing

!24

Assume we have 10 keys, all integers

server 0 server 1 server 2 server 3

0, 4, 8 1, 5, 9 2, 6 3, 7

Adding a new server

8/10 keys had to be reshuffled! 
Expensive!
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Consistent Hashing
• Problem with regular hashing: very sensitive to 

changes in the number of servers holding the data! 
• Consistent hashing will require on average that 

only K/n keys need to be remapped for K keys with 
n different slots (in our case, that would have been 
10/4 = 2.5 [compare to 8])

!25
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Consistent Hashing
• Construction: 

• Assign each of C hash buckets to random points 
on mod 2n circle, where hash key size = n 

• Map object to pseudo-random position on circle 
• Hash of object is the closest clockwise bucket

!26

0

4

8

12

Example: hash key size is 16

Each    is a value of hash % 16 

Each    is a bucket

Example: bucket with key 9?

9
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Consistent Hashing
It is relatively smooth: adding a new bucket doesn't 
change that much

!27

0

4

8

12

Add new bucket: only 
changes location of keys 

7,8,9,10

Delete bucket: only 
changes location of keys 

1,2,3
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Recurring Problem: Replication

• Replication solves some problems, but creates a 
huge new one: consistency

!28

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

OK, we obviously need to actually do something here to 
replicate the data… but what?
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Sequential Consistency

!29

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

Set A=5

“OK!”

5
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Availability
• Our protocol for sequential consistency does NOT 

guarantee that the system will be available!

!30

A B A B

Set A=5

6 7 765

Read A

Set A=5
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Consistent + Available

!31

A B A B

Set A=5

6 7 765

“OK”! “5”!

Set A=5

Read A

Assume 
replica failed
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Still broken...

!32

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume 

replica failed

Read A “6”!
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Network Partitions
• The communication links between nodes may fail 

arbitrarily 
• But other nodes might still be able to reach that 

node

!33

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume 

replica failed

Read A “6”!
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CAP Theorem
• Pick two of three: 

• Consistency: All nodes see the same data at the same 
time (strong consistency) 

• Availability: Individual node failures do not prevent 
survivors from continuing to operate 

• Partition tolerance: The system continues to operate 
despite message loss (from network and/or node failure) 

• You can not have all three, ever*
• If you relax your consistency guarantee (we’ll talk about 

in a few weeks), you might be able to guarantee THAT…

!34
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CAP Theorem
• C+A: Provide strong consistency and availability, 

assuming there are no network partitions 
• C+P: Provide strong consistency in the presence of 

network partitions; minority partition is unavailable 
• A+P: Provide availability even in presence of 

partitions; no strong consistency guarantee

!35
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Still broken...

!36

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

Set A=5

“OK!”

The robot devil will return in lecture 23
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Agreement
• In distributed systems, we have multiple nodes that 

need to all agree that some object has some state 
• Examples: 

• Who owns a lock 
• Whether or not to commit a transaction 
• The value of a file

!37



J. Bell GMU CS 475 Spring 2018

Agreement Generally
• Most distributed systems problems can be reduced to 

this one: 
• Despite being separate nodes (with potentially 

different views of their data and the world)… 
• All nodes that store the same object O must apply all 

updates to that object in the same order (consistency) 
• All nodes involved in a transaction must either commit 

or abort their part of the transaction (atomicity) 
• Easy? 

• … but nodes can restart, die or be arbitrarily slow 
• … and networks can be slow or unreliable too

!38
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Properties of Agreement
• Safety (correctness) 

• All nodes agree on the same value (which was 
proposed by some node) 

• Liveness (fault tolerance, availability) 
• If less than N nodes crash, the rest should still 

be OK

!39
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1-Phase Commit

• Naive protocol: coordinator broadcasts out 
“commit!” continuously until participants all say 
“OK!” 

• Problem: what happens when a participants fails 
during commit? How do the other participants know 
that they shouldn’t have really committed and they 
need to abort?

 40



2PC Example
Coordinator 

(client or 3rd party)
Participant 

Goliath National
Participant 

Duke & Duke
transaction
.commit() prepare

prepare
respon

seGNB

responseD&D If we can commit, then lock 
our customer, vote “yes”outcome

outcome
If everyone can commit, then 

outcome == commit, else 
abort
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Timeouts in 2PC
• Example: 

• Coordinator times out waiting for Goliath National 
Bank’s response 

• Bank times out waiting for coordinator’s outcome 
message 

• Causes? 
• Network 
• Overloaded hosts 
• Both are very realistic…

!42
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3 Phase Commit
• Goal: Eliminate this specific failure from blocking 

liveness

!43

Coordinator

Participant A

Participant B

Participant C

Participant D

Voted yes

Voted yesX
X Heard back “commit”

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result
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3 Phase Commit
• Goal: Avoid blocking on node failure 
• How? 

• Think about how 2PC is better than 1PC 
• 1PC means you can never change your mind or have a 

failure after committing 
• 2PC still means that you can’t have a failure after 

committing (committing is irreversible) 
• 3PC idea: 

• Split commit/abort into 2 sub-phases 
• 1: Tell everyone the outcome 
• 2: Agree on outcome 

• Now: EVERY participant knows what the result will be 
before they irrevocably commit!

!44
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3PC Example

!45

Coordinator Participants (A,B,C,D)

Soliciting 
votes

prepare

respon
se

pre-commitCommit 
authorized 
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Timeout causes abortTimeout causes 
abort

Timeout causes 
abort

Timeout causes commit
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Partitions

!46

Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Network Partition!!!Prepared to commitPrepared to commitPrepared to commit

Timeout behavior: abortTimeout behavior: 
Commit!

Commit Authorized

Committed Aborted Aborted Aborted
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Can we fix it?
• Short answer: No. 
• Fischer, Lynch & Paterson (FLP) Impossibility 

Result: 
• Assume that nodes can only fail by crashing, 

network is reliable but can be delayed arbitrarily 
• Then, there can not be a deterministic algorithm 

for the consensus problem subject to these 
failures

!47
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FLP - Intuition
• Why can’t we make a protocol for consensus/

agreement that can tolerate both partitions and 
node failures? 

• To tolerate a partition, you need to assume that 
eventually the partition will heal, and the network 
will deliver the delayed packages 

• But the messages might be delayed forever
• Hence, your protocol would not come to a result, 

until forever (it would not have the liveness 
property)

!48
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ZooKeeper - Guarantees
• Liveness guarantees: if a majority of ZooKeeper 

servers are active and communicating the service 
will be available 

• Durability guarantees: if the ZooKeeper service 
responds successfully to a change request, that 
change persists across any number of failures as 
long as a quorum of servers is eventually able to 
recover

!49



GFS Architecture
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Hadoop + ZooKeeper

!51

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode

ZKClient

ZK Server ZK ServerZK Server

Primary Secondary

timeout
Notification that leader is 

gone, secondary 
becomes primary

disconnected

Primary

NameNode

ZKClient

Secondary
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Example Threat: Web Server

!52

client page 
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really 
came from the user?Do I trust that this response 

really came from the server?

HTTP Request

HTTP Response

malicious actor 
“black hat”

Might be “man in the middle” 
that intercepts requests and 
impersonates user or server.
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Symmetric vs Asymmetric Crypto

!53

Symmetric Crypto Asymmetric Crypto

Requires a pre-
shared secret Yes No

Relative speed Very fast Very slow


