
Course Overview
SWE 432, Fall 2018

Design and Implementation of Software for the Web
Web Application Development

Bell GMU SWE 432 Fall 2018

Course Topics
• How do we organize, structure and share information?

• How to make applications that are delivered through
browsers

• JavaScript, front-end and back-end development,
programming models, testing, performance, privacy,
security, scalability, deployment, etc.

• How to design user interactions, focusing on browsers

• User-centered design, user studies, information
visualization, visual design, etc.

!2

Bell GMU SWE 432 Fall 2018

Logistics
• No textbook, but suggested readings will be listed

on course schedule

• Lab-style work included in many lectures (bring
your laptop)

!3

Bell GMU SWE 432 Fall 2018

Grading
• 50% Homework

• 5 assignments, ~2 weeks to do each, all done individually

• Your code will be autograded; you can resubmit an unlimited number
of times until the deadline and view your score

• Also graded by hand for some non-functional issues

• 10% Quizes

• Pass/fail (Pass if you are in class and submit a quiz, fail if you don’t)

• Use laptop or phone to complete the quiz in class

• 15% Midterm Exam, 20% Final Exam

!4

Bell GMU SWE 432 Fall 2018

Policies
• My promises to you:

• Quiz results will be available instantaneously in
class; we will discuss quiz in real time

• Homework will be graded within 1 week of
submission

• Exams will be graded within 1 week

!5

Bell GMU SWE 432 Fall 2018

Policies
• Lateness on homework:

• 10% penalty if submitted UP TO 24 hours after deadline

• No assignments will be accepted more than 24 hours late

• Out of fairness: no exceptions

• Attendance & Quizzes:

• You can miss up to 3 with no penalty

• Again, out of fairness: no exceptions beyond this

!6

Bell GMU SWE 432 Fall 2018

Course Staff
• Prof Jonathan Bell (me)

• Office hour: ENGR 4422 Mon & Weds 11:00am-12:00
pm or by appointment

• Areas of research: Software Engineering, Program
Analysis, Software Systems

!7

Two hobbies: cycling, ice cream

Bell GMU SWE 432 Fall 2018

Course Staff
• TAs: Mrudla Ichanahalli Anantharamaiah (Mia)

• Office Hours: TBA

• Please, no emails to instructor or TAs about the
class: use Piazza

!8

Bell GMU SWE 432 Fall 2018

Honor Code
• Refresh yourself of the department honor code

• Homeworks are 100% individual

• Discussing assignments at high level: ok, sharing code:
not ok

• If in doubt, ask the instructor

• If you copy code, we WILL notice (see some of my
recent research results in “code relatives”)

• Quizzes must be completed by you, and while in class

!9

Bell GMU SWE 432 Fall 2018

Project Overview
• Build a portfolio-worthy web application piece-by-

piece

• Split into four deliverables

• Each component builds on the last but you do not
need to reuse any code

• Starts with backend programming, then frontend

• Separate project: interaction design (without
programming) in last few weeks of class

!10

Project Overview

Project Topic

Bell GMU SWE 432 Fall 2018

Project Topic

!13

Bell GMU SWE 432 Fall 2018

Project Topic
• First assignment will be released on Weds

• High level:

• HW1: Implement the graphic generator

• HW2: Make a web service

• HW3: Make a frontend for web service

• HW4: Add social features

!14

Bell GMU SWE 432 Fall 2018

Web Sites vs Web Apps?

!15

Interactive?

User-generated content?

Informational vs fun?

Bell GMU SWE 432 Fall 2018

What is the web?
• A set of standards

• TCP/IP, HTTP, URLs, HTML, CSS, …

• A means for distributing structured and semi-
structured information to the world

• Infrastructure

!16

Bell GMU SWE 432 Fall 2018

Perspectives in web development

!17

Bell GMU SWE 432 Fall 2018

Systems Perspective
• How can we design robust, efficient, &

secure interactions between computers?

• Individual web app may run on

• Thousands of servers

• Owned and managed by different
orgs

• Millions of clients

• >TBs of constantly changing data

• What happens when a server crashes?

• How do we prevent a malicious user from
accessing user data on a server?

!18

Bell GMU SWE 432 Fall 2018

Software Engineering Perspective
• How can we design for change & reuse?

• Individual web app may

• Hundreds of developers

• Millions of lines of code

• New updates deployed many times a day

• Much functionality reused from code built by
other organizations

• Offer API that allows other web apps to be
built on top of it

• How can a developer successfully make a
change without understanding the whole
system?

• What happens when a new developer joins?

!19

Bell GMU SWE 432 Fall 2018

Human-Computer Interaction (HCI)
Perspective

• How can we design web apps
that are usable for their intended
purpose?

• Individual web app may

• Millions of users

• Tens of different needs

• What happens when a new user
interacts with the web app?

• How can we make a web app
less frustrating to use?

!20

Bell GMU SWE 432 Fall 2018

Pre-Web
• “As We May Think”, by Vannevar Bush, in The

Atlantic Monthly, July 1945

• Recommended that scientists work on inventing
machines for storing, organizing, retrieving and
sharing the increasing vast amounts of human
knowledge

• He targeted physicists and electrical engineers -
there were no computer scientists in 1945

!21

Bell GMU SWE 432 Fall 2018

Pre-Web - Memex

• MEMEX = MEMory EXtension

• Create and follow “associative trails” (links) and
annotations between microfilm documents

• Technically based on “rapid selectors” Bush built in
1930’s to search microfilm

• Conceptually based on human associative memory
rather than indexing

!22

Bell GMU SWE 432 Fall 2018

Pre-Web - Memex

!23

Never built

Bell GMU SWE 432 Fall 2018

Hypertext and the WWW
• 1965: Ted Nelson coins “hypertext” (the HT in

HTML) - “beyond” the linear constraints of text

• Many hypertext/hypermedia systems followed,
many not sufficiently scalable to take off

• 1968: Doug Engelbart gives “the mother of all
demos”, demonstrating windows, hypertext,
graphics, video conferencing, the mouse,
collaborative real-time editor

• 1969: ARPANET comes online

• 1980: Tim Berners-Lee writes ENQUIRE, a
notebook program which allows links to be made
between arbitrary nodes with titles

!24

Bell GMU SWE 432 Fall 2018

Origin of the Web

• 1989: Tim Berners-Lee,
“Information
Management: A Proposal”

• Became what we know
as the WWW

• A “global” hypertext
system full of links
(which could be single
directional, and could
be broken!)

!25

© CERN

Bell GMU SWE 432 Fall 2018

Early Browsers

!26

Bell GMU SWE 432 Fall 2018

Original WWW Architecture

!27

Links!!

Bell GMU SWE 432 Fall 2018

URI: Universal Resource Identifier

URI: <scheme>://<authority><path>?<query>

http://cs.gmu.edu/syllabus/syllabi-fall16/SWE432BellJ.html

!28

“Use HTTP  
scheme”

“Connect to cs.gmu.edu”

“Request syllabus/syllabi-fall16/SWE432BellJ.html”
More details: https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Other popular schemes:
ftp, mailto, file

May be host name or an IP address
Optional port name (e.g., :80 for port 80)

Bell GMU SWE 432 Fall 2018

DNS: Domain Name System

• Domain name system
(DNS) (~1982)

• Mapping from names
to IP addresses

• E.g. cs.gmu.edu ->
129.174.125.139

!29

Bell GMU SWE 432 Fall 2018

HTTP: HyperText Transfer Protocol
High-level protocol built on TCP/IP that defines how data is transferred
on the web

!30

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from disk

Bell GMU SWE 432 Fall 2018

HTTP Requests

• Request may contain additional header lines specifying,
e.g. client info, parameters for forms, cookies, etc.

• Ends with a carriage return, line feed (blank line)

• May also contain a message body, delineated by a blank
line

!31

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

“GET request”
Other popular types:
POST, PUT, DELETE, HEAD

“Resource”

Bell GMU SWE 432 Fall 2018

HTTP Responses

!32

“OK response”
Response status codes:
1xx Informational
2xx Success
3xx Redirection
4xx Client error
5xx Server error

“HTML returned  
content”
Common MIME types:
application/json
application/pdf
image/png

[HTML data]

Bell GMU SWE 432 Fall 2018

Properties of HTTP

• Request-response

• Interactions always initiated by client request to server

• Server responds with results

• Stateless

• Each request-response pair independent from every
other

• Any state information (login credentials, shopping carts,
etc.) needs to be encoded somehow

!33

Bell GMU SWE 432 Fall 2018

HTML: HyperText Markup Language

HTML is a markup language - it is a language for
describing parts of a document

!34

<i> </i>

Bell GMU SWE 432 Fall 2018

HTML: HyperText Markup Language

• NOT a programming language

• Tags are added to markup the text, encompassed
with <>’s

• Simple markup tags: ,<i>, <u> (bold, italic,
underline)

!35

This	text	is	bold!

This	text	is	bold!

Bell GMU SWE 432 Fall 2018

Web vs. Internet

!36

Web

Internet

HTML

Internet layer

Browser

Link layer

Transport layer

Application layer

PPP, MAC (Ethernet, DSL,
ISDN, …), …

IP, ICMP, IPSec, …

TCP, UDP, …

DNS, FTP, HTTP, IMAP, POP,
SSH, Telnet, TLS/SSL, …

CSS

Bell GMU SWE 432 Fall 2018

The Modern Web

• Evolving competing architectures for organizing content
and computation between browser (client) and web server

• 1990s: static web pages

• 1990s: server-side scripting (CGI, PHP, ASP, ColdFusion,
JSP, …)

• 2000s: single page apps (JQuery)

• 2010s: front-end frameworks (Angular, Aurelia, React, …),
microservices

!37

Bell GMU SWE 432 Fall 2018

Static Web Pages

• URL corresponds to directory location on server

• e.g. http://domainName.com/img/image5.jpg maps to img/
image5.jpg file on server

• Server responds to HTTP request by returning requested files

• Advantages

• Simple, easily cacheable, easily searchable

• Disadvantages

• No interactivity

!38

Bell GMU SWE 432 Fall 2018

Web 1.0 Problems

• At this point, most sites
were “read only”

• Lack of standards for
advanced content -
“browser war”

• No rich client content…
the best you could hope
for was a Java applet

!39

https://en.wikipedia.org/wiki/Browser_wars

https://en.wikipedia.org/wiki/Java_applet

Bell GMU SWE 432 Fall 2018

Dynamic Web Pages

!40

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Reads file from diskRuns a program

Bell GMU SWE 432 Fall 2018

Dynamic Web Pages

!41

HTTP Request
GET	/syllabus/syllabi-fall16/SWE432BellJ.html	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Runs a program

Web Server
Application

Syllabus
Generator

Application

Give	me	/syllabus/syllabi-fall16/SWE432BellJ.html

Here’s	some	text	to	send	back

Does whatever it wants

There’s a standard mechanism to talk to these
auxiliary applications, called CGI (Common

Gateway Interface)

Bell GMU SWE 432 Fall 2018

Server Side Scripting

• Generate HTML on the server through scripts

• Early approaches emphasized embedding server
code inside html pages

• Examples: CGI

!42

Bell GMU SWE 432 Fall 2018

Server Side Scripting Site

!43

Browser
HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(HTML)

HTML templates, server logic, load / store state to database

Bell GMU SWE 432 Fall 2018

Limitations

• Poor modularity

• Code representing logic, database interactions,
generating HTML presentation all tangled

• Example of a Big Ball of Mud [1]

• Hard to understand, difficult to maintain

• Still a step up over static pages!

!44

[1] http://www.laputan.org/mud/

Bell GMU SWE 432 Fall 2018

Server Side Frameworks
• Framework that structures server into tiers,

organizes logic into classes

• Create separate tiers for presentation, logic,
persistence layer

• Can understand and reason about domain logic
without looking at presentation (and vice versa)

• Examples: ASP.NET, JSP

!45

Bell GMU SWE 432 Fall 2018

Server Side Framework Site

!46

Browser

HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(HTML)

Presentation tier

Domain logic tier

Persistence tier

Bell GMU SWE 432 Fall 2018

Limitations

• Need to load a whole new web page to get new data

• Users must wait while new web page loads,
decreasing responsiveness & interactivity

• If server is slow or temporarily non-responsive,
whole user interface hangs!

• Page has a discernible refresh, where old content
is replaced and new content appears rather than
seamless transition

!47

Bell GMU SWE 432 Fall 2018

Single Page Application (SPA)

• Client-side logic sends messages to server, receives response

• Logic is associated with a single HTML pages, written in Javascript

• HTML elements dynamically added and removed through DOM
manipulation

• Processing that does not require server may occur entirely client side,
dramatically increasing responsiveness & reducing needed server
resources

• Classic example: Gmail

!48

Bell GMU SWE 432 Fall 2018

SPA Enabling Technologies
• AJAX: Asynchronous Javascript and XML

• Set of technologies for sending asynchronous
request from web page to server, receiving
response

• DOM Manipulation

• Methods for updating the HTML elements in a
page after the page may already have loaded

• JSON: JavaScript Object Notation

• Standard syntax for describing and transmitting
Javascript data objects

• JQuery

• Wrapper library built on HTML standards designed
for AJAX and DOM manipulation

!49

https://en.wikipedia.org/wiki/JSON

JSON

Bell GMU SWE 432 Fall 2018

Single Page Application Site

!50

Browser

HTML

Web Server

Database

HTTP  
Request

HTTP  
Response

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Javascript

events

HTML elements

Bell GMU SWE 432 Fall 2018

Limitations
• Poor modularity client-side

• As logic in client grows increasingly large and
complex, becomes Big Ball of Mud

• Hard to understand & maintain

• DOM manipulation is brittle & tightly coupled, where
small changes in HTML may cause unintended
changes (e.g., two HTML elements with the same id)

• Poor reuse: logic tightly coupled to individual HTML
elements, leading to code duplication of similar
functionality in many places

!51

Bell GMU SWE 432 Fall 2018

Front End Frameworks

• Client is organized into separate components, capturing model of
web application data

• Components are reusable, have encapsulation boundary (e.g.,
class)

• Components separate logic from presentation

• Components dynamically generate corresponding code based on
component state

• In contrast to HTML element manipulation, framework
generates HTML, not user code, decreasing coupling

• Examples: Meteor, Ember, Angular, Aurelia, React

!52

Bell GMU SWE 432 Fall 2018

Front End Framework Site

!53

Browser

Web Server

Database

HTTP  
Request

HTTP  
Response

(JSON)

Presentation tier

Domain logic tier

Persistence tier

Front end framework

Component logic Component logic Component logic

Component presentation Component presentation Component presentation

Bell GMU SWE 432 Fall 2018

Limitations

• Duplication of logic in client & server

• As clients grow increasingly complex, must have logic
in both client & server

• May even need to be written twice in different
languages! (e.g., Javascript, Java)

• Server logic closely coupled to corresponding client
logic. Changes to server logic require corresponding
client logic change.

• Difficult to reuse server logic

!54

Bell GMU SWE 432 Fall 2018

Microservices

• Small, focused web server that communicates
through data requests & responses

• Focused only on logic, not presentation

• Organized around capabilities that can be reused
in multiple context across multiple applications

• Rather than horizontally scale identical web
servers, vertically scale server infrastructure into
many, small focused servers

!55

Bell GMU SWE 432 Fall 2018

Microservice Site

!56

Browser

Web Servers

Database

HTTP  
Request

HTTP  
Response

(JSON)

Front end framework

Component logic Component logic Component logic

Component presentation Component presentation Component presentation

HTTP  
Request

HTTP  
Response

(JSON)

HTTP  
Request

HTTP  
Response

(JSON)

Microservice Microservice

HTTP  
Request

HTTP  
Response

(JSON)

Bell GMU SWE 432 Fall 2018

Architectural Styles

• Architectural style specifies

• how to partition a system

• how components identify and communicate with
each other

• how information is communicated

• how elements of a system can evolve
independently

!57

Bell GMU SWE 432 Fall 2018

Constant change in web architectural styles
• Key drivers

• Maintainability (new ways to achieve better modularity)

• Reuse (organizing code into modules)

• Scalability (partitioning monolithic servers into services)

• Responsiveness (movement of logic to client)

• Versioning (support continuous roll-out of new features)

• Web standards have enabled many possible solutions

• Explored through many, many frameworks, libraries, and
programming languages

!58

Bell GMU SWE 432 Fall 2018

The web today
• Many technologies for each architectural style

• Most support more than one

• Applications often evolve from one architectural style to
another

• Leads to applications combining multiple architectural styles

• E.g., Single page app that uses server side scripting for a
separate set of pages

• Newer architectural styles not always better

• More complex, may be overkill for simple sites

!59

Bell GMU SWE 432 Fall 2018

Philosophy of the Internet
• Decentralisation: No permission is needed from a central authority to post anything on

the Web, there is no central controlling node, and so no single point of failure … and no
“kill switch”! This also implies freedom from indiscriminate censorship and surveillance.

• Non-discrimination: If I pay to connect to the internet with a certain quality of service,
and you pay to connect with that or a greater quality of service, then we can both
communicate at the same level. This principle of equity is also known as Net Neutrality.

• Bottom-up design: Instead of code being written and controlled by a small group of
experts, it was developed in full view of everyone, encouraging maximum participation
and experimentation.

• Universality: For anyone to be able to publish anything on the Web, all the computers
involved have to speak the same languages to each other, no matter what different
hardware people are using; where they live; or what cultural and political beliefs they
have. In this way, the Web breaks down silos while still allowing diversity to flourish.

• Consensus: For universal standards to work, everyone had to agree to use them. Tim
and others achieved this consensus by giving everyone a say in creating the standards,
through a transparent, participatory process at W3C.

From http://webfoundation.org/about/vision/history-of-the-web/

!60

Bell GMU SWE 432 Fall 2018

Internet Governance

• IETF = Internet Engineering Task Force

• Open, all-volunteer organization

• Organized into working groups on specific topics

• Request for Comments

• One of a series, begun in 1969, of numbered
informational documents and standards followed by
commercial software and freeware in the Internet and
Unix communities

• All Internet standards are recorded in RFCs

!61

