
CSS & DOM
SWE 432, Fall 2018

Web Application Development

Bell GMU SWE 432 Fall 2018

Review: HTML Example

!2

https://seecode.run/#-KQgR7vG9Ds7IUJS1kdq

Use <h1>, <h2>, …, <h5>
for headings

https://seecode.run/#-KQgR7vG9Ds7IUJS1kdq

Bell GMU SWE 432 Fall 2018

Today
• HW2 Recap
• CSS
• Bootstrap
• DOM
• HW3

!3

Bell GMU SWE 432 Fall 2018

p {
 font-family: Arial;}

CSS: Cascading Style Sheets
• Language for styling documents

• Separates visual presentation (CSS) from document
structure (HTML)
• Enables changes to one or the other.
• Enables styles to be reused across sets of elements.

!4

“Select all <p> elements”
Selector describes a set of HTML elements

“Use Arial font family”

Property Value

Declaration indicates how selected
elements should be styled.

Bell GMU SWE 432 Fall 2018

CSS History
• 1994: Cascading HTML style sheets—a proposal

• Hakon W Lie proposes CSS
• Working w/ Tim-Berners Lee at CERN

• 1996: CSS1 standard, recommended by W3C
• Defines basic styling elements like font, color,

alignment, margin, padding, etc.
• 1998: CSS2 standard, recommended by W3C

• Adds positioning schemes, z-index, new font properties
• 2011: CSS3 standards divided into modules, begin

adoption
• Add more powerful selectors, more powerful attributes

!5

https://en.wikipedia.org/wiki/Cascading_Style_Sheets#History

https://dev.opera.com/articles/css-twenty-years-hakon/

https://en.wikipedia.org/wiki/Cascading_Style_Sheets#History
https://dev.opera.com/articles/css-twenty-years-hakon/

Bell GMU SWE 432 Fall 2018

CSS Styling

• Invisible box around every element.
• Rules control how sets of boxes and their contents

are presented

!6

Example Styles
BOXES
Width, height
Borders (color, width, style)
Position in the browser window

TEXT
Typeface
Size, color
Italics, bold, lowercase

Bell GMU SWE 432 Fall 2018

Using CSS

• External CSS enables stylesheets to be reused
across multiple files

• Can include CSS files
• Can nest CSS files

• @import url(“file.css”) imports a CSS file in a CSS
file

!7

External CSS Internal CSS

Bell GMU SWE 432 Fall 2018

CSS Type Selectors
• What if we wanted

more green?

!8

“Select all <h2> and
<h3> elements”
Type selector selects one or
more element types.

“Select all elements”
Universal selector selects all
elements.

Bell GMU SWE 432 Fall 2018

CSS Class Selectors

Classes enable the creation of sets of elements that
can be styled in the same way.

!9

“Label element with imageLarge
class”

“Define class imageLarge.”

“Define large class that applies
only to elements”

“Define transparent class”

Bell GMU SWE 432 Fall 2018

CSS id selectors

• Advantages
• Control presentation of individual elements

• Disadvantages
• Must write separate rule for each element

!10

Bell GMU SWE 432 Fall 2018

Additional selector types

!11

Selector Meaning Example

Descendant
selector

Matches all descendants
of an element p a { } Select <a> elements inside <p>

elements

Child selector Matches a direct child of
an element h1>a { } Select <a> elements that are directly

contained by <h1> elements.

First child selector Matches the first child of
an element

h1:first-child
{ }

Select the the elements that are the
first child of a <h1> element.

Adjacent selector Matches selector h1+p { } Selects the first <p> element after
any <h1> element

Negation selector Selects all elements that
are not selected. body *:not(p) Select all elements in the body that

are not <p> elements.

Attribute selector Selects all elements that
define a specific attribute. input[invalid] Select all <input> elements that

have the invalid attribute.

Equality attribute
selector

Select all elements with a
specific attribute value

p[class=“invi
sible”]

Select all <p> elements that have
the invisible class.

Bell GMU SWE 432 Fall 2018

CSS Selectors
• Key principles in designing effective styling rules

• Use classes, semantic tags to create sets of
elements that share a similar rules

• Don’t repeat yourself (DRY)
• Rather than create many identical or similar

rules, apply single rule to all similar elements
• Match based on semantic properties, not styling

• Matching elements based on their pre-existing
styling is fragile

!12

Bell GMU SWE 432 Fall 2018

Cascading selectors
• What happens if more than one rule applies?
• Most specific rule takes precedence

• p b is more specific than p
• #maximizeButton is more specific than button

• If otherwise the same, last rule wins
• Enables writing generic rules that apply to many

elements that are overriden by specific rules
applying to a few elements

!13

Bell GMU SWE 432 Fall 2018

CSS inheritance
• When an element is contained inside another

element, some styling properties are inherited
• e.g., font-family, color

• Some properties are not inherited
• e.g., background-color, border

• Can force many properties to inherit value from
parent using the inherit value
• e.g., padding: inherit;

!14

Bell GMU SWE 432 Fall 2018

Exercise - What is selected?

!15

1.

2.

ul: unordered list
li: list element

Bell GMU SWE 432 Fall 2018

Pseudo classes

Classes that are automatically attached to elements
based on their attributes.

!16

“Select elements that
have focus.”

“Select elements with
the invalid attribute.”

Bell GMU SWE 432 Fall 2018

Examples of pseudo classes
• :active - elements activated by user. For mouse clicks,

occurs between mouse down and mouse up.
• :checked - radio, checkbox, option elements that are

checked by user
• :disabled - elements that can’t receive focus
• :empty - elements with no children
• :focus - element that currently has the focus
• :hover - elements that are currently hovered over by mouse
• :invalid - elements that are currently invalid
• :link - link element that has not yet been visited
• :visited - link element that has been visited

!17

Bell GMU SWE 432 Fall 2018

Color
• Can set text color (color) and

background color (background-color)
• Several ways to describe color

• six digit hex code (e.g., #ee3e80)
• color names: 147 predefined

names
• rgb(red, green, blue): amount of

red, green, and blue
• hsla(hue, saturation, lightness,

alpha): alternative scheme for
describing colors

• Can set opacity (opacity) from 0.0 to
1.0

!18

Bell GMU SWE 432 Fall 2018

Typefaces

!19

font-family: Georgia, Times, serif;

“Use Georgia if available, otherwise
Times, otherwise any serif font”.
font-family enables the typeface to be specified.
The typeface must be installed. Lists of fonts
enable a browser to select an alternative.

Serif Sans-Serif Monospace Cursive

Bell GMU SWE 432 Fall 2018

Styling text

• text-transform: uppercase, lowercase, capitalize
• text-decoration: none, underline, overline, line-through, blink
• letter-spacing: space between letters (kerning)
• text-align: left, right, center, justify
• line-height: total of font height and empty space between

lines
• vertical-align: top, middle, bottom, …
• text-shadow: [x offset][y offset][blur offset][color]

!20

Bell GMU SWE 432 Fall 2018

Cursor

• Can change the default cursor with cursor attribute
• auto, crosshair, pointer, move, text, wait, help,

url(“cursor.gif”)
• Should only do this if action being taken clearly

matches cursor type

!21

Bell GMU SWE 432 Fall 2018

CSS "Box" Model

• Boxes, by default, are sized just large enough to fit their contents.
• Can specify sizes using px or %

• % values are relative to the container dimensions
• margin: 10px 5px 10px 5px; (clockwise order - [top] [right] [bottom]

[left])
• border: 3px dotted #0088dd; ([width] [style] [color])

• style may be solid, dotted,dashed, double, groove, ridge, inset,
outset, hidden / none

!22

margin

padding

width height border-radius

Bell GMU SWE 432 Fall 2018

Centering content

• How do you center an element inside a container?
• Step 1: Must first ensure that element is narrower

than container.
• By default, element will expand to fill entire

container.
• So must usually explicitly set width for element.

• Step 2: Use auto value for left and right to create
equal gaps

!23

Bell GMU SWE 432 Fall 2018

Visibility and layout
• Can force elements to be inline or

block element.
• display: inline
• display: block

• Can cause element to not be laid
out or take up any space
• display: none
• Very useful for content that is

dynamically added and removed.
• Can cause boxes to be invisible, but

still take up space
• visibility: hidden;

!24

Bell GMU SWE 432 Fall 2018

Positioning schemes

!25

Normal flow (default)

Block level elements appear
on a new line. Even if there
is space, boxes will not
appear next to each other.

Absolute positioning

Element taken out of normal
flow and does not affect
position of other elements.
Moves as user scrolls.

Fixed positioning

Element taken out of normal flow and does not
affect position of other elements. Fixed in
window position as user scrolls.

Floating elements

Element taken out of normal flow and position to
far left or right of container. Element becomes
block element that others flow around.

Relative positioning

Element shifted from normal
flow. Position of other
elements is not affected.

Bell GMU SWE 432 Fall 2018

Stacking elements

• Elements taken out of normal flow may be stacked
on top of each other

• Can set order with z-index property
• Higher numbers appear in front

• Can set opacity of element, making occluded
elements partially visible

!26

Bell GMU SWE 432 Fall 2018

Transform - examples

• Can modify coordinate space of element to rotate,
skew, distort

!27

Bell GMU SWE 432 Fall 2018

Transitions

• transition: [property time], …, [property time]
• When new class is applied, specifies the time it

will take for each property to change
• Can use all to select all changed properties

!28

Bell GMU SWE 432 Fall 2018

Fixed width vs. liquid layouts
• Fixed width

• Use width=“[num]px” to force specific sizes
• Allows for tightest control of look and feel
• But can end up with extra whitespace around edge of web page

• Liquid layout
• Use width=“[num]%” to size relative to container sizes
• Pages expand to fill the entire container size
• Problems

• Wide windows may create long lines of text can be difficult to read
• Very narrow windows may squash words, breaking text onto many lines

• (Partial) solution
• Can use min-width, min-height, max-width, max-height to set bounds

on sizes

!29

Bell GMU SWE 432 Fall 2018

Designing for mobile devices
• Different devices have different aspect ratios.

• Important to test for different device sizes.
• May sometimes build alternative layouts for

different device sizes.
• Using specialized controls important.

• Enables mobile browsers to use custom device-
specific widgets that may be much easier to use.

!30

Bell GMU SWE 432 Fall 2018

CSS Best Practices
• When possible, use CSS to declaratively describe

behavior rather than code
• Easier to read, can be optimized more effectively

by browser
• Don’t repeat yourself (DRY)

• Rather than duplicating rules, create selectors to
style all related elements with single rule

• CSS should be readable
• Use organization, indentation, meaningful

identifiers, etc.

!31

Bell GMU SWE 432 Fall 2018

GUI Component Frameworks
• Can build arbitrarily complex UIs from the primitives

we’ve seen
• menus, nav bars, multiple views, movable panes, …

• But lots of work
• Lots of functionality / behavior / styling to build from

scratch
• Browsers are not always consistent (especially

before HTML5, CSS3)
• Responsive layouts add complexity

• Solution: GUI component frameworks

!32

Bell GMU SWE 432 Fall 2018

GUI Component Frameworks
• Higher-level abstractions for GUI components

• Rather than building a nav
• Exposes new options, events, properties

• Integrated component
• Associate HTML elements with components

using CSS classes
• Framework dynamically updates HTML as

necessary through JS
• Offers higher-level abstractions for interacting

with components

!33

Bell GMU SWE 432 Fall 2018

Bootstrap
• Popular GUI component framework

• http://getbootstrap.com/
• Originally built and released by developers at

Twitter in 2011
• Open source
• Offers baseline CSS styling & library of GUI

components

!34

http://getbootstrap.com/

Bell GMU SWE 432 Fall 2018

Examples

!35

Bell GMU SWE 432 Fall 2018

Bootstrap Grid Layout
• Offers 12 column grid

• Build column widths as integer number of
columns. Total must add up to exactly 12.

• Use rows to create horizontal groups of columns.
• Based on space, columns will either appear

horizontally, or if not enough space, will be stacked
vertically

• Choice between fixed-width (.container) and full-
width (.container-fluid)

!36

http://getbootstrap.com/css/

Bell GMU SWE 432 Fall 2018

Example: Stacked-to horizontal

!37

http://getbootstrap.com/css/

Bell GMU SWE 432 Fall 2018

Bootstrap & React
• We’ll use the react-bootstrap NPM module -

Bootstrap for React!
• https://react-bootstrap.github.io

!38

https://react-bootstrap.github.io

Bell GMU SWE 432 Fall 2018

Frontend JavaScript
• Static page

• Completely described by HTML & CSS
• Dynamic page

• Adds interactivity, updating HTML based on user
interactions

• Adding JS to frontend:
<script>
 console.log("Hello, world!");
</script>

• We try to avoid doing this because:
• Hard to organize
• Different browsers support different things

!39

Bell GMU SWE 432 Fall 2018

DOM: Document Object Model

• API for interacting with HTML browser
• Contains objects corresponding to every HTML

element
• Contains global objects for using other browser

features

!40

Reference and tutorials
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

Bell GMU SWE 432 Fall 2018

Global DOM objects
• window - the browser window

• Has properties for following objects (e.g.,
window.document)

• Or can refer to them directly (e.g., document)
• document - the current web page
• history - the list of pages the user has visited

previously
• location - URL of current web page
• navigator - web browser being used
• screen - the area occupied by the browser & page

!41

Bell GMU SWE 432 Fall 2018

Working with popups
• alert, confirm, prompt

• Create modal popups
• User cannot interact with web page until clears

the popups
• Only good style for messages that are really

important

!42

Bell GMU SWE 432 Fall 2018

Working with location
• Some properties

• location.href - full URL of current location
• location.protocol - protocol being used
• location.host - hostname
• location.port
• location.pathname

• Can navigate to new page by updating the current
location
• location.href = ‘[new URL]’;

!43

Bell GMU SWE 432 Fall 2018

Traveling through history
• history.back(), history.forward(), history.go(delta)
• What if you have an SPA & user navigates through

different views?
• Want to be able to jump between different views

within a single URL
• Solution: manipulate history state

• Add entries to history stack describing past
views

• Store and retrieve object using
history.pushState() and history.state

!44

Bell GMU SWE 432 Fall 2018

DOM Manipulation
• We can also manipulate the DOM directly
• For this class, we will not focus on doing this, but

will use React instead
• This is how React works though - it manipulates the

DOM

!45

Bell GMU SWE 432 Fall 2018

DOM Manipulation

• value
• attribute
• style
•

!46

document.getElementById('compute')  
 .addEventListener("click", multiply);
function multiply() 
{  
 var x = document.getElementById('num1').value;  
 var y = document.getElementById('num2').value;  
 var productElem = document.getElementById('product'); 
 productElem.innerHTML = x * y;  
}

<h3>Multiply two numbers</h3>  
<div>  
 <input id="num1" type="number" /> * 
 <input id="num2" type="number" /> = 
  

 
 <button id="compute">Multiply</button>  
</div>

May choose any event that the compute
element produces. May pass the name of a
function or define an anonymous function
inline.

“Get compute element” “When compute is clicked, call
multiply”

Bell GMU SWE 432 Fall 2018

DOM Manipulation

• value
• attribute
• style
•

!47

document.getElementById('compute')  
 .addEventListener("click", multiply);
function multiply() 
{  
 var x = document.getElementById('num1').value;  
 var y = document.getElementById('num2').value;  
 var productElem = document.getElementById('product'); 
 productElem.innerHTML = ‘’ + x * y + ‘’; 
}

<h3>Multiply two numbers</h3>  
<div>  
 <input id="num1" type="number" /> * 
 <input id="num2" type="number" /> = 
  

 
 <button id="compute">Multiply</button>  
</div>

“Get the current value of the
num1 element”

“Set the HTML between the tags of
productElem to the value of x * y”
Manipulates the DOM by programmatically
updating the value of the HTML content. DOM offers
accessors for updating all of the DOM state.

Bell GMU SWE 432 Fall 2018

DOM Manipulation Pattern
• Wait for some event

• click, hover, focus, keypress, …
• Do some computation

• Read data from event, controls, and/or previous
application state

• Update application state based on what
happened

• Update the DOM
• Generate HTML based on new application state

• Also: JQuery

!48

Bell GMU SWE 432 Fall 2018

Examples of events
• Form element events

• change, focus, blur
• Network events

• online, offline
• View events

• resize, scroll
• Clipboard events

• cut, copy, paste
• Keyboard events

• keydown, keypress, keypup
• Mouse events

• mouseenter, mouseleave, mousemove, mousedown, mouseup, click,
dblclick, select

!49

List of events: https://www.w3.org/TR/DOM-Level-3-Events/

https://www.w3.org/TR/DOM-Level-3-Events/

Bell GMU SWE 432 Fall 2018

DOM Manipulation Example

https://jsfiddle.net/Lbnhs8aa/1/

https://jsfiddle.net/Lbnhs8aa/1/

Bell GMU SWE 432 Fall 2018

React vs DOM manipulation
• React will help us a lot when:

• State changes (who wants to keep track of
where the state is on the page?)

• State needs to appear in multiple places (and be
synchronized)

• Page contains lots of data not shown on the
page (and you need to swap out what’s shown
often)

!51

Bell GMU SWE 432 Fall 2018

Loading pages
• What is the output of the following?

<script>  
 document.getElementById('elem').innerHTML
= 'New content'; 
</script>  
 
<div id="elem">Original content</div>

!52

Answer: cannot set property innerHTML of undefined
Solution: Put your script in after the rest of the page is loaded

Or, perhaps better solution: don’t do DOM manipulation

Bell GMU SWE 432 Fall 2018

HW3 Discussion

!53

https://www.jonbell.net/swe-432-fall-2018-web-programming/
homework-3/

https://www.jonbell.net/swe-432-fall-2018-web-programming/homework-3/
https://www.jonbell.net/swe-432-fall-2018-web-programming/homework-3/

