
Security
SWE 432, Fall 2018

Web Application Development

Bell GMU SWE 432 Fall 2018

p {
 font-family: Arial;}

Review: CSS: Cascading Style Sheets
• Language for styling documents

• Separates visual presentation (CSS) from document
structure (HTML)
• Enables changes to one or the other.
• Enables styles to be reused across sets of elements.

!2

“Select all <p> elements”
Selector describes a set of HTML elements

“Use Arial font family”

Property Value

Declaration indicates how selected
elements should be styled.

Bell GMU SWE 432 Fall 2018

Review: CSS Type Selectors
• What if we wanted

more green?

!3

“Select all <h2> and
<h3> elements”
Type selector selects one or
more element types.

“Select all elements”
Universal selector selects all
elements.

Bell GMU SWE 432 Fall 2018

Review: GUI Component Frameworks

• Higher-level abstractions for GUI components
• Rather than building a nav
• Exposes new options, events, properties

• Integrated component
• Associate HTML elements with components using CSS classes
• Framework dynamically updates HTML as necessary through JS
• Offers higher-level abstractions for interacting with components

!4

Bell GMU SWE 432 Fall 2018

Review: DOM Manipulation

• value
• attribute
• style
•

!5

document.getElementById('compute')  
 .addEventListener("click", multiply);
function multiply() 
{  
 var x = document.getElementById('num1').value;  
 var y = document.getElementById('num2').value;  
 var productElem = document.getElementById('product'); 
 productElem.innerHTML = x * y;  
}

<h3>Multiply two numbers</h3>  
<div>  
 <input id="num1" type="number" /> * 
 <input id="num2" type="number" /> = 
  

 
 <button id="compute">Multiply</button>  
</div>

May choose any event that the compute
element produces. May pass the name of a
function or define an anonymous function
inline.

“Get compute element” “When compute is clicked, call
multiply”

Bell GMU SWE 432 Fall 2018

Today

• Announcements
• HW2 Grading done this week
• HW3 is out
• Midterm next week

• Security
• What is it?
• Authentication
• Most important types of attacks

!6

For further reading:
https://www.owasp.org/index.php/

Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Bell GMU SWE 432 Fall 2018

Security
• Why is it important?

• Users’ data is on the
web
• Blog comments, FB,

Email, Banking, …
• Can others steal it?

• or who already has
access?

• Can others impersonate
the user?
• e.g., post on FB on

the user’s behalf

!7

Bell GMU SWE 432 Fall 2018

Security Requirements for Web Apps
1. Authentication

•Verify the identify of the parties involved
•Who is it?

2. Authorization
• Grant access to resources only to allowed users
• Are you allowed?

3. Confidentiality
• Ensure that information is given only to authenticated

parties
• Can you see it?

4. Integrity
• Ensure that information is not changed or tampered with
• Can you change it?

!8

Bell GMU SWE 432 Fall 2018

Threat Models
• What is being defended?

• What resources are important to defend?
• What malicious actors exist and what attacks might

they employ?

• Who do we trust?
• What entities or parts of system can be considered

secure and trusted
• Have to trust something!

!9

Bell GMU SWE 432 Fall 2018

Web Threat Models: Big Picture

!10

client page
(the “user”) server

HTTP Request

HTTP Response

Bell GMU SWE 432 Fall 2018

Web Threat Models: Big Picture

!11

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

Bell GMU SWE 432 Fall 2018

Web Threat Models: Big Picture

!12

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?Do I trust that this response

really came from the server?

Bell GMU SWE 432 Fall 2018

Web Threat Models: Big Picture

!13

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?Do I trust that this response

really came from the server?

HTTP Request

HTTP Response

malicious actor
“black hat”

Bell GMU SWE 432 Fall 2018

Web Threat Models: Big Picture

!14

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?Do I trust that this response

really came from the server?

HTTP Request

HTTP Response

malicious actor
“black hat”

Might be “man in the middle”
that intercepts requests and
impersonates user or server.

Bell GMU SWE 432 Fall 2018

Security Requirements for Web Apps
1. Authentication

•Verify the identify of the parties involved
•Threat: Impersonation. A person pretends to be
someone they are not.

2. Authorization
3. Confidentiality

• Ensure that information is given only to authenticated
parties

• Threat: Eavesdropping. Information leaks to someone
that should not have it.

4. Integrity
• Ensure that information is not changed or tampered with
• Threat: Tampering.

!15

Bell GMU SWE 432 Fall 2018

Integrity and Confidentiality

!16

client page
(the “user”) server

HTTP Request

HTTP Response

What if malicious actor
impersonates server?

HTTP Request

HTTP Response

malicious actor
“black hat”

Bell GMU SWE 432 Fall 2018

Man in the middle
• Requests to server intercepted by man in the

middle
• Requests forwarded
• But… response containing code edited, inserting

malicious code
• Or could

• Intercept and steal sensitive user data

!17

Bell GMU SWE 432 Fall 2018

HTTPS: HTTP over SSL
• Establishes secure connection from client to server

• Uses SSL to encrypt traffic
• Ensures that others can’t impersonate server by establishing

certificate authorities that vouch for server.
• Server trusts an HTTPS connection iff

• The user trusts that the browser software correctly implements
HTTPS with correctly pre-installed certificate authorities.

• The user trusts the certificate authority to vouch only for
legitimate websites.

• The website provides a valid certificate, which means it was
signed by a trusted authority.

• The certificate correctly identifies the website (e.g., certificate
received for “https://example.com" is for "example.com" and
not other entity).

!18

Bell GMU SWE 432 Fall 2018

Using HTTPS
• If using HTTPS, important that all scripts are

loaded through HTTPS
• If mixed script from untrusted source served

through HTTP, attacker could still modify this
script, defeating benefits of HTTPS

• Example attack:
• Banking website loads Bootstrap through HTTP

rather than HTTPS
• Attacker intercepts request for Bootstrap script,

replaces with malicious script that steals user
data or executes malicious action

!19

Bell GMU SWE 432 Fall 2018

Authentication
• How can we know the identify of the parties involved
• Want to customize experience based on identity

• But need to determine identity first!
• Options

• Ask user to create a new username and password
• Lots of work to manage (password resets, storing

passwords securely, …)
• Hard to get right (#2 on the OWASP Top 10

Vulnerability List)
• User does not really want another password…

• Use an authentication provider to authenticate user
• Google, FB, Twitter, Github, …

!20

Bell GMU SWE 432 Fall 2018

Authentication Provider
• Creates and tracks the identity of the user

• Instead of signing in directly to website, user signs
in to authentication provider
• Authentication provider issues token that

uniquely proves identity of user

!21

Bell GMU SWE 432 Fall 2018

Sign-on Gateway
• Can place some magic “sign-on gateway” before

out app - whether it’s got multiple services or just
one

!22

Our Cool App

Frontend
“Dumb”
Backend

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

AJAX

Todos

NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook

Python, Firebase

Sign-on
gateway

Unauthenticated
request Authenticated

request

Bell GMU SWE 432 Fall 2018

Bigger picture - authentication with
multiple service providers

• Let’s consider updating a Todos app so that it can
automatically put calendar events on a Google
Calendar

!23

Mod 1

REST
service

Database

Todos

Prof Hacker

Logs into,
posts new todo

Google
Calendar
API

Connects as user,
creates new event

How does Todos tell Google that it’s posting something for Prof Hacker?
Should Prof Hacker tell the Todos app her Google password?

Bell GMU SWE 432 Fall 2018 24

We’ve got something for that…

Bell GMU SWE 432 Fall 2018

OAuth
• OAuth is a standard protocol for sharing information

about users from a “service provider” to a “consumer
app” without them disclosing their password to the
consumer app

• 3 key actors:
• User, consumer app, service provider app
• E.x. “Prof Hacker,” “Todos App,” “Google Calendar”

• Service provider issues a token on the user’s behalf that
the consumer can use

• Consumer holds onto this token on behalf of the user
• Protocol could be considered a conversation…

!25

Bell GMU SWE 432 Fall 2018 26

An OAuth Conversation

TodosApp

Google Calendar

User

1: intent

2: permission
(to ask)

3: re
direct

to provider

4: permission to share
5:

 to
ke

n
cr

ea
te

d

6: Access resource

Goal: TodosApp can post events to User’s calendar.
TodosApp never finds out User’s email or password

Bell GMU SWE 432 Fall 2018 27

Tokens?

Example token:
eyJhbGciOiJSUzI1NiIsImtpZCI6ImU3Yjg2NjFjMGUwM2Y3ZTk3NjQyNGUxZWFiMzI5OWIxNzRhNGVlNWUifQ.eyJpc3MiOiJodHRwczovL3NlY3VyZXRva
2VuLmdvb2dsZS5jb20vYXV0aGRlbW8tNzJhNDIiLCJuYW1lIjoiSm9uYXRoYW4gQmVsbCIsInBpY3R1cmUiOiJodHRwczovL2xoNS5nb29nbGV1c2VyY29ud
GVudC5jb20vLW0tT29jRlU1R0x3L0FBQUFBQUFBQUFJL0FBQUFBQUFBQUgwL0JVV2tONkRtTVJrL3Bob3RvLmpwZyIsImF1ZCI6ImF1dGhkZW1vLTcyYTQyI
iwiYXV0aF90aW1lIjoxNDc3NTI5MzcxLCJ1c2VyX2lkIjoiSk1RclFpdTlTUlRkeDY0YlR5Z0EzeHhEY3VIMiIsInN1YiI6IkpNUXJRaXU5U1JUZHg2NGJUe
WdBM3h4RGN1SDIiLCJpYXQiOjE0Nzc1MzA4ODUsImV4cCI6MTQ3NzUzNDQ4NSwiZW1haWwiOiJqb25iZWxsd2l0aG5vaEBnbWFpbC5jb20iLCJlbWFpbF92Z
XJpZmllZCI6dHJ1ZSwiZmlyZWJhc2UiOnsiaWRlbnRpdGllcyI6eyJnb29nbGUuY29tIjpbIjEwOTA0MDM1MjU3NDMxMjE1NDIxNiJdLCJlbWFpbCI6WyJqb
25iZWxsd2l0aG5vaEBnbWFpbC5jb20iXX0sInNpZ25faW5fcHJvdmlkZXIiOiJnb29nbGUuY29tIn19.rw1pPK377hDGmSaX31uKRphKt4i79aHjceepnA8A
2MppBQnPJlCqmgSapxs-Pwmp-1Jk382VooRwc8TfL6E1UQUl65yi2aYYzSx3mWMTWtPTHTkMN4E-GNprp7hX-
pqD3PncBh1bq1dThPNyjHLp3CUlPPO_QwaAeSuG5xALhzfYkvLSINty4FguD9vLHydpVHWscBNCDHACOqSeV5MzUs6ZYMnBIitFhbkak6z5OClvxGTGMhvI8
m11hIHdWgNGnDQNNoosiifzlwMqDHiF5t3KOL-mxtcNq33TvMAc43JElxnyB4g7qV2hJIOy4MLtLxphAfCeQZA3sxGf7vDXBQ

A token is a secret value. Holding it gives us access to some
privileged data. The token identifies our users and app.

{  
 "iss": "https://securetoken.google.com/authdemo-72a42",  
 "name": “Alsyssa P Hacker”,  
 "picture": "https://lh5.googleusercontent.com/-m-OocFU5GLw/AAAAAAAAAAI/AAAAAAAAAH0/BUWkN6DmMRk/photo.jpg",  
 "aud": "authdemo-72a42",  
 "auth_time": 1477529371,  
 "user_id": "JMQrQiu9SRTdx64bTygA3xxDcuH2",  
 "sub": "JMQrQiu9SRTdx64bTygA3xxDcuH2",  
 "iat": 1477530885,  
 "exp": 1477534485,  
 "email": "alyssaphacker@gmail.com",  
 "email_verified": true,  
 "firebase": { 
 "identities": { 
 "google.com": ["109040352574312154216"], 
 "email": ["alyssaphacker@gmail.com"]  
 }, 
 "sign_in_provider": "google.com" 
},  
 "uid": "JMQrQiu9SRTdx64bTygA3xxDcuH2" 
}

Decoded:

Bell GMU SWE 432 Fall 2018

Trust in OAuth
• How does the Service

provider (Google calendar)
know what the TodosApp
is?

• Solution: When you set up
OAuth for the first time, you
must register your
consumer app with the
service provider

• Let the user decide
• … they were the one who

clicked the link after all

!28

TodosApp Google CalendarUser

Evil TodosApp

Bell GMU SWE 432 Fall 2018

Authentication as a Service
• Whether we are building “microservices” or not,

might make sense to farm out our authentication
(user registration/logins) to another service

• Why?
• Security
• Reliability
• Convenience

• We can use OAuth for this!

!29

Bell GMU SWE 432 Fall 2018 30

Using an Authentication Service

Firebase

User

1: intent

2: permission
(to ask)

3: re
direct

to provider

4: permission to share
5:

 to
ke

n
cr

ea
te

d
6: Access resource

Bell GMU SWE 432 Fall 2018

Firebase Authentication
• Firebase provides an entire suite of authentication

services you can use to build into your app
• Can either use “federated” logins (e.g. login with

google, facebook, GitHub credentials) or simple
email/password logins. Use whichever you want.

• Getting started guide: https://github.com/firebase/
FirebaseUI-Web

• Firebase handles browser local storage to track
that the user is logged in across pages (woo)

!31

https://github.com/firebase/FirebaseUI-Web
https://github.com/firebase/FirebaseUI-Web

Bell GMU SWE 432 Fall 2018

Top 3 Web Vulnerabilities
• OWASP collected data on vulnerabilities

• Surveyed 7 firms specializing in web app
security

• Collected 500,000 vulnerabilities across
hundreds of apps and thousands of firms

• Prioritized by prevalence as well as exploitability,
detectability, impact

!32

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Bell GMU SWE 432 Fall 2018

#3 - XSS: Cross Site Scripting
• User input that contains a client-side script that does not

belong
• A todo item:

/><script>alert("LASAGNA FOR PRESIDENT”);</script>

• Works when user input is used to render DOM elements
without being escaped properly

• User input saved to server may be served to other users
• Enables malicious user to execute code on other’s

users browser
• e.g., click ‘Buy’ button to buy a stock, send password

data to third party, …

!33

Bell GMU SWE 432 Fall 2018

#2 - Broken Authentication and Session
Management

• Building authentication is hard
• Logout, password management, timeouts, secrete questions,

account updates, …
• Vulnerability may exist if

• User authentication credentials aren’t protected when stored using
hashing or encryption.

• Credentials can be guessed or overwritten through weak account
management functions (e.g., account creation, change password,
recover password, weak session IDs).

• Session IDs are exposed in the URL (e.g., URL rewriting).
• Session IDs don’t timeout, or user sessions or authentication tokens,

particularly single sign-on (SSO) tokens, aren’t properly invalidated
during logout.

• Session IDs aren’t rotated after successful login.
• Passwords, session IDs, and other credentials are sent over

unencrypted connections.

!34

Bell GMU SWE 432 Fall 2018

#1 - Injection
• User input that contains server-side code that does

not belong
• Usually comes up in context of SQL (which we

aren’t using)
• e.g.,  

String query = "SELECT * FROM accounts WHERE
custID='" + request.getParameter("id") + "'";

• Might come up in JS in context of eval
• eval(request.getParameter(“code”));
• Obvious injection attack - don’t do this!

!35

Bell GMU SWE 432 Fall 2018

Validating user input
• Escape Strings that originate from user
• Type of escaping depends on where data will be

used
• HTML - HTML entity encoding
• URL - URL Escape
• JSON - Javascript Escape

• Done automatically by some frameworks such as
React

• More details: https://www.owasp.org/index.php/
XSS_(Cross_Site_Scripting)_Prevention_Cheat_She
et

!36

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Bell GMU SWE 432 Fall 2018

Authentication: Sharing data between
pages

• Browser loads many pages at the same time.
• Might want to share data between pages

• Popup that wants to show details for data on
main page

• Cookies that let user login once for a page and
still be logged in when visiting page in separate
tab

• Attack: malicious page
• User visits a malicious page in a second tab
• Malicious page steals data from page or its

cookies, modifies data, or impersonates user

!37

Bell GMU SWE 432 Fall 2018

Solution: Same-Origin Policy
• Browser needs to differentiate pages that are part

of same application from unrelated pages
• What makes a page similar to another page?

• Origin: the protocol, host, and port

!38

https://en.wikipedia.org/wiki/Same-origin_policy

http://www.example.com/dir/page.html

https://www.example.com/dir/page.html
• Different origins:

http://www.example.com:80/dir/page.html

http://en.example.com:80/dir/page.html

https://en.wikipedia.org/wiki/Same-origin_policy

Bell GMU SWE 432 Fall 2018

Same-Origin Policy
• “Origin” refers to the page that is executing it, NOT where

the data comes from
• Example:

• In one HTML file, I directly include 3 JS scripts, each
loaded from a different server

• -> All have same “origin”
• Example:

• One of those scripts makes an AJAX call to yet another
server

• -> AJAX call not allowed
• Scripts contained in a page may access data in a second

web page (e.g., its DOM) if they come from the same origin

!39

Bell GMU SWE 432 Fall 2018

Cross Origin Requests

!40

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Bell GMU SWE 432 Fall 2018

CORS: Cross Origin Resource Sharing

• Same-Origin might be safer, but not really usable:
• How do we make AJAX calls to other servers?

• Solution: Cross Origin Resource Sharing (CORS)
• HTTP header:

 Access-Control-Allow-Origin: <server or wildcard>

• In Express:

!41

res.header("Access-Control-Allow-Origin", "*");

Bell GMU SWE 432 Fall 2018

Takeaways

• Think about all potential threat models
• Which do you care about
• Which do you not care about

• What user data are you retaining
• Who are you sharing it with, and what might they

do with it

!42

Bell GMU SWE 432 Fall 2018

HW3 Discussion

!43

https://www.jonbell.net/swe-432-fall-2018-web-programming/
homework-3/

https://www.jonbell.net/swe-432-fall-2018-web-programming/homework-3/
https://www.jonbell.net/swe-432-fall-2018-web-programming/homework-3/

