Design Thinking and Conceptual Design

SWE 432, Fall 2018

Design and Implementation of Software for the Web

Review: What usability is not

- Not "dummy proofing"
- Not being "user-friendly"
- Not just "usability testing"
- Not just making software pretty

Review: Heuristics

- 1. Visibility of system status
- 2. Match between system and the real world
- 3. User control and freedom
- 4. Consistency and standards
- 5. Error prevention
- 6. Recognition vs. recall
- 7. Flexibility and efficiency of use
- 8. Aesthetic and minimalist design
- 9. Help users recognize, diagnose, and recover from errors
- 10.Help and documentation

Review: Heuristic Example

- I. Visibility of system status
- 2. Match between system and the real world
- 3. User control and freedom
- 4. Consistency and standards
- 5. Error prevention
- 6. Recognition vs. recall
- 7. Flexibility and efficiency of use
- 8. Aesthetic and minimalist design
- 9. Help users recognize, diagnose, and recover from errors
- 10. Help and documentation

wGetGUI v1.0 You a	re using GNU Wget 1.9-beta	- 1.7 is minimum.	
URL: Hosts Span All Allow List ->		Clear Clear	Retrieval Options No clobber Timestamping Continue file download Quota (kB): Spider (check for files)
Accept/Reject Accept/Reject Accept: Reject: htm(l) gif ipg txt zip exe doc All Custom list: *thm* Clear small* 	Special Retries: 10 Additional Parameters: Additional Parameters: Additional Parameters: Additional Parameters: Additional Parameters: Convert links Ignore robots.txt Configure Proxy Save Save Load settings	Running Options Go 2 background No info All info Some info Append to logfile Overwrite Logfile Logfile: default.log About	 No directories ✓ Force directories ✓ Save to custom dir: ✓ Clear Server Cache ✓ Recursive Retrieval Depth: 0 ✓ Download "as-is" Mirror site ✓ add HTML suffix
Start wGetStart.bat	Add to wGetStart.bat Emp	ty wGetStart.bat Pro Mode	🔲 Only go deeper

Today

- How do we set ourselves up to build good interfaces from the start?
- What is the iterative process by which we start out with a lot of ideas, and end up with some good, end result interface?
- Case study in design Piles
- Reminder: HW4 due 11/14

For further reading on the case study: <u>https://dl.acm.org/citation.cfm?id=143055</u>

Different designs for the same problem

	a co	mbo_192_1540669340.pdf	С
►	📄 Do	cuments for Jackie	${\mathbb T}^{i}$
	a ec	oop18-paper49-2.pdf	Ν
	🚺 Fal	I18_candidates.xlsx	Ν
	a fas	st-facts 17-18	S
	a fas	st-facts 17-18 2	S
	foc)	T
►	📄 i'm	a folder	Υ
	l) ICS	ST_2019_submissions56_2018-10-23_14_44.zip	С
	🖂 Le	cture 20 - Design Thing and Conceptual Design	Υ
	a Ma	lone-1983-HowDoPeople.pdf	Y
	🚺 PL	MW SPLASH 2018 Budget AS.xlsx	С
	a Se	archCommitteeCONFIDENTIALITYForm(004)	N
	a Te:	sting ed workshop.pdf	S
	🧟 Try	/FinallyExample_javac.class	Ν

Why sketch?

- Design is process of creation & exploration
- Sketching offers visual medium for exploration, offering cognitive scaffolding to externalize cognition
- Sketches let us explore many alternative designs

Why alternatives?

- Important to think broadly about a wide range of possible designs
 - What are the different ways in which user might do x?
- Rather than reimplement the status quo, alternatives offer options for doing things differently, enabling analysis of which is best
 - Important to challenge preconceptions and think deeper
- Rather than develop a single idea, sketching enables exploration and consideration of multiple designs, allowing examination of pros and cons
- Expert designers often create many alternatives
 - 10, 50, 100 alternative designs

Sketching vs. Prototyping

Physical sketches

- Production tools for sketching:
 - whiteboards, blackboards, cork boards, flip chart easels
 - post it notes
 - duct tape, scotch tape, push pins, staples
 - marking pens, crayons, spray paint
 - scissors, hobby knives, foam core board
 - duct tape
 - bits of cloth, rubber

Sketches are Sketchy

- Not mechanically correct and perfectly straight lines
- Freehand, open gestures
- Strokes may miss connections
- Resolution & detail low enough to suggest is concept
- Deliberately ambiguous & abstract, leaving "holes" for imagination

Benefits of Sketching

- No "programming" needed! Fast turnaround
 - Costs less
 - Allows more iterations
- Human computer
 - Can be (re)programmed quickly
 - Cannot crash
 - Changes can be made on the fly
- Developers feel less affection for status quo because changes are easy
- Rough "sketchy" appearance
 - Emphasizes content instead of appearance
 - Avoids low-level critiques of visual detail
 - Users are more willing to criticize high-level problems and less willing to blame themselves if something doesn't work

Sketch Example

Sketch: List

Sketch: Icons

Rules for sketching

- Everyone can sketch; you do not have to be artistic
- Most ideas conveyed more effectively with sketch than words.
- Sketches are quick and inexpensive to create; do not inhibit early exploration
- Sketches are disposable; no investment in sketch itself
- Sketches are timely; made in-the-moment, just-in-time
- Sketches are plentiful; entertain large # of ideas w/ multiple sketches of each

Sketches include annotations

Myers et al. (2008). How Designers Design and Program Interactive Behaviors. VL/HCC 2008.

 Annotations explain what is going on in each part of sketch & how

Sketches support design exploration

GMU SWE 432 Fall 2018

B. Buxton. Sketching User Experiences.

Fidelity of sketches & mockups

storyboard	wireframe	prototype
IOW +		→ high
(many details left unspecified)	fidelity	(more polished & detailed)

Sketching Example: News Viewer

0	UID Wireframe	
	FLEX.ble News Require Sports Vech VErken	
•	- R - a hu - 2	
	-Dillect size bases with simile firmat every fore?	
FLE	kible News	

0	UID Wirefame
	FLEX.ble News Reput Sparts Tech VErter
•	
	-Different size bases with simile firmet copy fore?
FLE	Xible News
1	

Conceptual design

Designer's mental model

- Conceptualization of the envisioned system
 - what it is
 - how it is organized
 - what it does
 - how it works

User's mental model

- Comes up from existing interactions with systems
- Users form cause & effect relationships to form theories that guide actions

Conceptual design

- Goal: match users' **mental model**
- Tool: Metaphor analogies from existing system
 - Offers expectations about what system does & what can be done
- Examples
 - Email <----> physical mail
 - Backup software <-->time machine
 - OS desktop <--> top of a desk

Storyboards

Storyboard for Disney's Melody: Adventures in Music (1953)

Source: Michael Sporn Animation

Storyboards for UI design

- Sequence of visual "frames" illustrating interplay between user & envisioned system
- Explains how app fits into a larger context through a single scenario / story
- Bring design to life in graphical clips freeze frame sketches of user interactions
- "Comic-book" style **illustration** of a scenario, with actors, screens, interaction, & dialog

Crafting a storyboard

- Set the stage:
 - Who? What Where? Why? When?
- Show key interactions with application
- Show consequences of taking actions
- May also think about errors

Example elements of a UI storyboard

- Hand-sketched pictures annotated with a few words
- Sketch of user activity before or after interacting w/ system
- Sketches of devices & screens
- Connections with system (e.g., database connection)
- Physical user actions
- Cognitive user action in "thought balloons"

Example: ticket kiosk

Ticket buyer walks up to the kiosk

Displays "Occupied" sign on wraparound case

Sensor detects user & starts immersive process

Detects people with ID card

Example: ticket kiosk

Greets buyer and asks for PIN

Buyer selects "Boston symphony at Burruss Hall"

Shows recommendations & most popular categories

Plays music from symphony, shows date & time picker

Frame transitions

- Transitions between frames particularly important
- What users think, how users choose actions
- Many problems can occur here (e.g., gulfs of execution & evaluation)
- Useful to think about how these work, can add thought bubbles to describe

Design Fail

Where do we start?

Needfinding (a.k.a. design research)

- Goal: understand user's needs
- Use of methods to gather qualitative data
 - behaviors, attitudes, aptitudes of potential and existing users
 - technical, business, and environmental contexts domain
 - vocabulary and social aspects of domain
 - how existing products used
- Empowers team w/ credibility and authority, helping inform decisions

Interviews

- May include both current users and potential users w/ related needs
- Questions
 - context of how product fits into lives or work
 - when, why, how is or will product be used
 - what do users need to know to do jobs?
 - current tasks and activities, including those not currently supported
 - goals and motivations of using product
 - problems and frustrations with current products or systems

Observations

- Most incapable of accurately assessing own behaviors
- May avoid talking about problems to avoid feeling dumb
- Observing yields more accurate data
- Capture behaviors: notes, pictures, video (if possible)

Contextual design

- An approach to answering the question, "What should we build to help people do their work better?"
- Key elements
 - Contextual Inquiry Gather data from customers while they do their work to help decide what system should do.
 - Work modeling Use data to build **models** of work that are explicit and sharable.
 - Work redesign Use data and models to design work model for how customers will work in the future. The core design problem is work design, rather than technology design.
 - Use work model and iterative prototyping to drive detailed user interface design.
- Customer data, modeling and work design drive technology design.

Design Thinking Case Study - Piles

- The context: Apple Computer, 1992, 3 researchers (Richard Mander, Gitta Salomon and Yin Yin Wang)
- The design problem: How should computers help users organize and file information?
- The method: How do users organize and file information best *without* computers?

Computer users are confronted with large amounts of information, but **currently are only provided with a hierarchical filing system for managing it [folders]**.

Piles - Methodology

- Interview 13 Apple employees in different departments for 30-60 minutes
- Studied:
 - How does information arrive in your work area?
 - What do you do with information once you get it?
 - Where does it go next?
 - Where and how is it stored?
 - How do you work with (or would work with) an assistant?

Piles - Study Results

- Users used many artifacts like:
 - Folders
 - File cabinets
 - File racks
 - Binders
 - Piles
- Problems with filing in folders/cabinets:
 - "I'm not always as good at categorizing things as I would like...it's hard to get it right and I'm sort of a perfectionist, so I think that I should know exactly how I should do it...I like things in their place, but I can't figure out exactly what place."

"Seemingly disordered piles were often sensible to the person who created them, because they developed through many interactions over a long period of time."

"...Most workers kept information they needed in a specific working area. A common strategy was to create separate piles for each project and place them within the working area, at distances that reflected their urgency."

Piles as a Design Metaphor

- Insight: Many tasks do not rely on hierarchy of files (e.g. organization in folders in cabinets)
 - Note, not first to suggest metaphor of piles, Thomas Malone (Xerox PARC) described nearly 10 years earlier in 1983
- How do workers use piles?
 - Edge browse find cues from the edge of a pile (thickness, color, texture)
 - Restack Start at the top, browse down by removing things
 - Hinge Unfold the pile like a binder
 - Spread out See all/many items at once

Assistance with Information Management

- Most participants in the study did not have an assistant but mentioned that they wanted one, why?
- Assistants might:
 - Sort incoming data into categories
 - Filtered incoming data
 - Create piles
 - All in collaboration with the worker
 - "I'll go into his office and put [labels] on piles on his floor and he'll look at it and say 'no' or he'll say 'that's pretty good'."

- Created sketches to facilitate discussion and evaluation
- Example features:
 - System-created piles

System-created pile (Organized)

- Created sketches to facilitate discussion and evaluation
- Example features:
 - New files added to the pile are directly visually represented

- Created sketches to facilitate discussion and evaluation
- Example features:
 - System-user collaboration for defining rules

Select an item from Move to new pile a pile

Update pile script

- Created sketches to facilitate discussion and evaluation
- Example features:
 - Browsing by spreading a pile out

- Created sketches to facilitate discussion and evaluation
- Example features:
 - Browsing and maintaining structure (kind of like hinge)

- Created sketches to facilitate discussion and evaluation
- Example features:
 - Visualizing the contents of a pile

Piles - Evaluation

- Built prototypes, conducted studies
- We'll return to this when we discuss prototyping and user studies
- What do YOU think are good/bad things about this metaphor?

Piles - Legacy

- Patent issued to Apple in 2001
- 2007 (OS 10.5) introduced Cover Flow

1 of 1,222 selected, 89.57 GB available

Piles - Legacy

- Patent issued to Apple in 2001
- 2007 (OS 10.5) also introduced stacks

Piles - Legacy

- Patent issued to Apple in 2001
- 2018 (OS 10.14) introduces desktop stacks

TryFinallyExample _javac.class

Desktop Stacks

Stack by kind Stack by last opened Stack by tag