
Introduction to Concurrency
CS 475, Spring 2018

Concurrent & Distributed Systems

With material from Herlihy &
Shavit, Art of Multiprocessor

Programming

J. Bell GMU CS 475 Spring 2019

• Distributed & Concurrent Systems: high level overview and key concepts

• Relevant links:
• Syllabus: http://www.jonbell.net/gmu-cs-475-spring-2019/
• Piazza: https://piazza.com/class/jqzcb36wlqz249

!2

Today

http://www.jonbell.net/gmu-cs-475-spring-2019/
https://piazza.com/class/jqzcb36wlqz249

J. Bell GMU CS 475 Spring 2019

• This course will teach you how and why to build distributed systems
• Distributed System is “a collection of independent computers that appears to

its users as a single coherent system”
• This course will give you theoretical knowledge of the tradeoffs that you’ll face

when building distributed systems

!3

Course Topics

J. Bell GMU CS 475 Spring 2019

• Prof Jonathan Bell (me)
• Office hour: ENGR 4422 Mon & Weds 1:30-2:15 pm or by appointment
• Areas of research: Software Engineering, Program Analysis, Software

Systems

!4

Course Staff

Two hobbies: cycling, ice cream

J. Bell GMU CS 475 Spring 2019

• GTA: Abhijeet Mishra
• Office Hours: TBA

• Please, no emails to instructor or TAs about the class: use Piazza

!5

Course Staff

J. Bell GMU CS 475 Spring 2019

• 55% Homework
• 4 assignments + final project, ~2 weeks to do each, all done individually
• Your code will be autograded; you can resubmit and view your score
• Also graded by hand for some non-functional issues

• 10% Checkpoint quizes
• Pass/fail (Pass if you are in class and submit a quiz, fail if you don’t)
• Use laptop or phone to complete the quiz in class (please write your name

and answers on a piece of paper and bring to me after class if you lost/
broke/etc your smart phone or laptop)

• 15% Midterm Exam, 20% Final Exam

!6

Grading

J. Bell GMU CS 475 Spring 2019 !7

CAUTION
HEAVY PROGRAMMING

NEXT 13 WEEKS

J. Bell GMU CS 475 Spring 2019

• They may be unlike any assignments you have done so far
• By the end of the semester, you will have built a sizable and complicated, real,

usable distributed system, using standard technologies like RMI and ZooKeeper
• Assignments are mostly out for 2 weeks: it will take 2 weeks to do the

assignment
• If you start the day before, there will not be enough hours in the day to

complete the assignment
• Assignments are graded on functionality, with clear cut-offs for partial

functionality. Focus on building incremental functionality (some, but very few
points for trying to get everything and succeeding at nothing)

• First assignment out Monday

!8

But, seriously

J. Bell GMU CS 475 Spring 2019

• My promises to you:
• Quiz results will be available instananeously in class; we will discuss quiz in

real time
• Homework will be graded within 3 days of submission
• Exams will be graded within a week

!9

Policies

J. Bell GMU CS 475 Spring 2019

• Lateness on homework:
• 10% penalty if submitted UP TO 24 hours after deadline
• No assignments will be accepted more than 24 hours late
• Out of fairness: no exceptions

• Attendance & Quizzes:
• You can miss up to 3 with no penalty
• Again, out of fairness: no exceptions beyond this

!10

Policies

J. Bell GMU CS 475 Spring 2019

• Refresh yourself of the department honor code
• Homeworks are 100% individual

• Discussing assignments at high level: ok, sharing code: not ok
• If in doubt, ask the instructor
• If you copy code, we WILL notice (see some of my recent research results in

“code relatives”)
• Online activities/checkpoints/quizzes must be completed by you, and while in

class
• Nobody leaves the room until all responses are accounted

!11

Honor Code

J. Bell GMU CS 475 Spring 2019

• Good news: new (to this class) book!
• The Art of Multiprocessor Programming, Herlihy

and Shavit
• Also recommended as a reference (free): Distributed

Systems 3rd Edition (van Steen and Tanenbaum)
https://www.distributed-systems.net/index.php/
books/distributed-systems-3rd-edition-2017/

!12

Readings

https://www.distributed-systems.net/index.php/books/distributed-systems-3rd-edition-2017/
https://www.distributed-systems.net/index.php/books/distributed-systems-3rd-edition-2017/

J. Bell GMU CS 475 Spring 2019 !13

Course Topics

How do I run a big task
across many computers?

Distributed Systems, second half
of course

How do I run multiple things at
once on my computer?

Concurrency, first half of course

J. Bell GMU CS 475 Spring 2019

• From hardware
• To OS
• To programming languages
• To networks
• To libraries and middleware
• To developers

!14

Layers

J. Bell GMU CS 475 Spring 2019

• Goal: do multiple things, at once, coordinated, on one computer
• Update UI
• Fetch data
• Respond to network requests
• Improve responsiveness, scalability

• Recurring problems:
• Coordination: what is shared, when, and how?

!15

Concurrency

J. Bell GMU CS 475 Spring 2019

• Goal: take something complicated, make it “easy”
• Operating Systems

• From CPUs and memory to processes and threads
• Distributed Systems

• From collections of computers to coherent applications

!16

Abstractions

J. Bell GMU CS 475 Spring 2019 !17

Abstractions

What are the abstractions that sit between the CPU and my multitasking operating
system?

J. Bell GMU CS 475 Spring 2019 !18

Concurrency & Parallelism
T1 T2 T3 T44 different things:

T1 T2 T3 T4 T1 T1 T3 T4 T2 T1 T3Concurrency:
(1 processor)

Time

T1 T3 T4 T2 T1 T3
Parallelism:

(2 processors)
Time

T1 T2 T3 T4 T1 T1

J. Bell GMU CS 475 Spring 2019

• Def: A process is an instance of a running program
• Process provides each program with two key abstractions

• Logical control flow
• Each program seems to have exclusive use of the CPU.

• Private address space
• Each program seems to have exclusive use of main memory.

• How are these illusions maintained?
• Process executions interleaved (multitasking)
• Address spaces managed by virtual memory system

!19

Processes

J. Bell GMU CS 475 Spring 2019 !20

Processes

code heap
data files

stack

public class Sample
{
 static int i;
 public static void main(String[] args)
 {
 int k = 10;
 foo(k);
 }
 public static void foo(int in)
 {
 bar(in);
 }
 public static void bar(int in)
 {
 i = in;
 System.out.println("bar");
 }
}

Sample.main
args, k

Sample.foo
in

Sample.bar
in, i

System.out.println
this, “bar”

static int i;

Active Stack
Frame

J. Bell GMU CS 475 Spring 2019

• Traditional processes created and managed by the OS kernel
• Process creation expensive - fork system call in UNIX
• Context switching expensive
• Cooperating processes - no need for memory protection (separate address

spaces)

!21

Threads

J. Bell GMU CS 475 Spring 2019

• Process + Thread -> one computer
• How can we abstract many computers working together?
• What does that even look like?

!22

More Abstractions

J. Bell GMU CS 475 Spring 2019

• Completely hiding the underlying complexity is never possible, usually not
desirable

• Example: our first two abstractions (concurrency) - process and thread

!23

Leaky Abstractions

Hardware View

J. Bell GMU CS 475 Spring 2019

• Say there’s a 1% chance of having some hardware failure occur to a machine
(power supply burns out, hard disk crashes, etc)

• Now I have 10 machines
• Probability(at least one fails) = 1 - Probability(no machine fails) = 1-(1-.01)10

= 10%
• 100 machines -> 63%
• 200 machines -> 87%
• So obviously just adding more machines doesn’t solve fault tolerance

!24

More machines, more problems

J. Bell GMU CS 475 Spring 2019

• Completely hiding how distributed a system is may be too much:
• Communication latencies can't be hidden (pesky speed of light!)
• Completely hiding failures is impossible (we will prove this later in the

semester)
• Can never distinguish a slow computer from one that is crashed

• Hiding more adds performance costs

!25

How much to hide?

J. Bell GMU CS 475 Spring 2019

• We are going to focus on principles first, then practice
• Start with idealized models
• Look at simplistic problems
• Emphasize correctness over pragmatism
• “Correctness may be theoretical, but incorrectness has practical impact”

• First principle (today): Mutual Exclusion

!26

Road Map

J. Bell GMU CS 475 Spring 2019 !27

Online activity
Go to socrative.com and select “Student Login” (works well on laptop, tablet or

phone)
Room Name: CS475

ID is your @gmu.edu email

http://socrative.com
http://gmu.edu

J. Bell GMU CS 475 Spring 2019 !28

Mutual Exclusion

static int i = 0;
public static void increment()
{
 i = i + 1;
}

Thread 1 Thread 2

increment() increment()

read i = 0

write i = 1 read i = 0

write i =1

This is one possible interleaving

If two threads run the same code (at once), what is the
value of i at the end?

Is it guaranteed to be 2? No - it can also be 1 at the end!

J. Bell GMU CS 475 Spring 2019

• Mutual exclusion: how can we guarantee that multiple threads do not enter
the same critical region at the same time

!29

Mutual Exclusion

static int i = 0;
public static void increment()
{
 i = i + 1;
}

Critical Region

J. Bell GMU CS 475 Spring 2019

Art of Multiprocessor
Programming

Mutual Exclusion or “Alice & Bob share a
pond”

!30

A B

J. Bell GMU CS 475 Spring 2019

Alice has a pet

!31

A B

Art of Multiprocessor
Programming

J. Bell GMU CS 475 Spring 2019

Bob has a pet

!32

A B

Art of Multiprocessor
Programming

J. Bell GMU CS 475 Spring 2019

The Problem

!33

A B

The pets don’t
get along

Art of Multiprocessor
Programming

(the pond is the critical section)

J. Bell GMU CS 475 Spring 2019

• Two types of formal properties in asynchronous computation:
• Safety Properties

– Nothing bad happens ever
• Liveness Properties

– Something good happens eventually

!34

Formalizing the Problem

J. Bell GMU CS 475 Spring 2019

• Mutual Exclusion

• Both pets never in pond simultaneously

• This is a safety property

• No Deadlock

• if only one wants in, it gets in

• if both want in, one gets in.

• This is a liveness property

!35

Formalizing our Problem

J. Bell GMU CS 475 Spring 2019

• Idea
– Just look at the pond

• Gotcha
– Trees obscure the view

!36

Simple Protocol

J. Bell GMU CS 475 Spring 2019

• Threads can’t “see” what other threads are doing
• Explicit communication required for coordination

!37

Interpretation

J. Bell GMU CS 475 Spring 2019

• Idea
– Bob calls Alice (or vice-versa)

• Gotcha
– Bob takes shower
– Alice recharges battery
– Bob out shopping for pet food …

!38

Cell Phone Protocol

J. Bell GMU CS 475 Spring 2019

• Message-passing doesn’t work
• Recipient might not be

– Listening
– There at all

• Communication must be
– Persistent (like writing)
– Not transient (like speaking)

!39

Interpretation

J. Bell GMU CS 475 Spring 2019

Can Protocol

!40

co
la

co
la

Art of Multiprocessor
Programming

J. Bell GMU CS 475 Spring 2019

Bob conveys a bit

!41

A B
co

la

Art of Multiprocessor
Programming

J. Bell GMU CS 475 Spring 2019

Bob conveys a bit

!42

A B

cola

Art of Multiprocessor
Programming

J. Bell GMU CS 475 Spring 2019

• Idea
– Cans on Alice’s windowsill
– Strings lead to Bob’s house
– Bob pulls strings, knocks over cans

• Gotcha
– Cans cannot be reused
– Bob runs out of cans

!43

Can Protocol

J. Bell GMU CS 475 Spring 2019

• Cannot solve mutual exclusion with interrupts
– Sender sets fixed bit in receiver’s space
– Receiver resets bit when ready
– Requires unbounded number of inturrupt bits

!44

Interpretation

J. Bell GMU CS 475 Spring 2019

Flag Protocol

!45

A B

Art of Multiprocessor
Programming

J. Bell GMU CS 475 Spring 2019

Alice’s Protocol (sort of)

!46

A B

Art of Multiprocessor
Programming

J. Bell GMU CS 475 Spring 2019

Bob’s Protocol (sort of)

!47

A B

Art of Multiprocessor
Programming

J. Bell GMU CS 475 Spring 2019

• Raise flag
• Wait until Alice’s flag is down
• Unleash pet
• Lower flag when pet returns

• Raise flag
• Wait until Bob’s flag is down
• Unleash pet
• Lower flag when pet returns

!48

Alice’s Protocol

da
ng

er
!

Bob’s Protocol

A B

After you! No, no… after you!

J. Bell GMU CS 475 Spring 2019

• Raise flag
• Wait until Alice’s flag is down
• Unleash pet
• Lower flag when pet returns

• Raise flag
• Wait until Bob’s flag is down
• Unleash pet
• Lower flag when pet returns

!49

Alice’s Protocol

da
ng

er
!

Bob’s Protocol

A B

After you! No, no… after you!

J. Bell GMU CS 475 Spring 2019

• Raise flag
• While Alice’s flag is up

– Lower flag
– Wait for Alice’s flag to

go down
– Raise flag

• Unleash pet
• Lower flag when pet

returns

!50

Bob’s Protocol (2nd try)

• Raise flag
• Wait until Bob’s flag is down
• Unleash pet
• Lower flag when pet returns

Alice’s Protocol

J. Bell GMU CS 475 Spring 2019

• Raise flag
• While Alice’s flag is up

– Lower flag
– Wait for Alice’s flag to go down
– Raise flag

• Unleash pet
• Lower flag when pet returns

!51

Bob’s Protocol
Bob defers to

Alice

J. Bell GMU CS 475 Spring 2019

• Raise the flag
• Look at other’s flag
• Flag Principle:

– If each raises and looks, then
– Last to look must see both flags up

!52

The Flag Principle

J. Bell GMU CS 475 Spring 2019

• Assume both pets in pond
– Derive a contradiction
– By reasoning backwards

• Consider the last time Alice and Bob each looked before letting the pets in
• Without loss of generality assume Alice was the last to look…

!53

Proof of Mutual Exclusion

J. Bell GMU CS 475 Spring 2019 !54

Proof

time

Alice’s last look

Alice last raised her flag

Bob’s last
look

QED

Alice must have seen Bob’s Flag. A Contradiction

Bob last raised
flag

J. Bell GMU CS 475 Spring 2019

• If only one pet wants in, it gets in.
• Deadlock requires both continually trying to get in.
• If Bob sees Alice’s flag, he gives her priority (a gentleman…)

!55

Proof of No Deadlock

QED

J. Bell GMU CS 475 Spring 2019

• Two types of formal properties in asynchronous computation:
• Safety Properties

– Nothing bad happens ever
• Liveness Properties

– Something good happens eventually

!56

Formalizing the Problem

?

J. Bell GMU CS 475 Spring 2019

• Protocol is unfair
– Bob’s pet might never get in (starvation)

• Protocol uses waiting
– If Bob is eaten by his pet, Alice’s pet might never get in

!57

Remarks

J. Bell GMU CS 475 Spring 2019

• Mutual Exclusion cannot be solved by
– transient communication (cell phones)
– interrupts (cans)

• It can be solved by
– one-bit shared variables that can be read or written (flags)

!58

Moral of Story

J. Bell GMU CS 475 Spring 2019

• We are going to focus on principles first, then practice
• Start with idealized models
• Look at simplistic problems
• Emphasize correctness over pragmatism
• “Correctness may be theoretical, but incorrectness has practical impact”

• HW 1 will be posted Monday

!59

Road Map

J. Bell GMU CS 475 Spring 2019

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

!60

This work is licensed under a Creative Commons Attribution-
ShareAlike license

http://creativecommons.org/licenses/by-sa/4.0/

