
Processes & Threads
CS 475, Spring 2019

Concurrent & Distributed Systems

With material from Herlihy &
Shavit, Art of Multiprocessor

Programming

J. Bell GMU CS 475 Spring 2019 !2

Mutual Exclusion

static int i = 0;
public static void increment()
{
 i = i + 1;
}

Thread 1 Thread 2

increment() increment()

read i = 0

write i = 1 read i = 0

write i =1

This is one possible interleaving

If two threads run the same code (at once), what is the
value of i at the end?

Is it guaranteed to be 2? No - it can also be 1 at the end!

J. Bell GMU CS 475 Spring 2019

The Problem

A B

The pets don’t
get along

Art of Multiprocessor
Programming

J. Bell GMU CS 475 Spring 2019

Flag Protocol

A B

Art of Multiprocessor
Programming

J. Bell GMU CS 475 Spring 2019

Alice’s Protocol (sort of)

A B

Art of Multiprocessor
Programming

J. Bell GMU CS 475 Spring 2019

Bob’s Protocol (sort of)

A B

Art of Multiprocessor
Programming

J. Bell GMU CS 475 Spring 2019

• Raise flag
• Wait until Alice’s flag is down
• Unleash pet
• Lower flag when pet returns

• Raise flag
• Wait until Bob’s flag is down
• Unleash pet
• Lower flag when pet returns

!7

Alice’s Protocol

da
ng

er
!

Bob’s Protocol

A B

After you! No, no… after you!

J. Bell GMU CS 475 Spring 2019

• Raise flag
• Wait until Alice’s flag is down
• Unleash pet
• Lower flag when pet returns

• Raise flag
• Wait until Bob’s flag is down
• Unleash pet
• Lower flag when pet returns

!8

Alice’s Protocol

da
ng

er
!

Bob’s Protocol

A B

After you! No, no… after you!

J. Bell GMU CS 475 Spring 2019

• Raise flag
• While Alice’s flag is up

– Lower flag
– Wait for Alice’s flag to

go down
– Raise flag

• Unleash pet
• Lower flag when pet

returns

!9

Bob’s Protocol (2nd try)

• Raise flag
• Wait until Bob’s flag is down
• Unleash pet
• Lower flag when pet returns

Alice’s Protocol

J. Bell GMU CS 475 Spring 2019 !10

Review: Abstractions

J. Bell GMU CS 475 Spring 2019

• What OS abstractions do we use for concurrency and parallelism?
• Threads
• Processes

• Reading: H&S 1.5
• Note: HW1 posted: https://www.jonbell.net/gmu-cs-475-spring-2019/

homework-1/

!11

Today

https://www.jonbell.net/gmu-cs-475-spring-2019/homework-1
https://www.jonbell.net/gmu-cs-475-spring-2019/homework-1

J. Bell GMU CS 475 Spring 2019

• Def: A process is an instance of a running program
• Process provides each program with two key abstractions

• Logical control flow
• Each program seems to have exclusive use of the CPU.

• Private address space
• Each program seems to have exclusive use of main memory.

• How are these illusions maintained?
• Process executions interleaved (multitasking)
• Address spaces managed by virtual memory system

!12

Processes

J. Bell GMU CS 475 Spring 2019 !13

Processes

code heap
data files

stack

public class Sample
{
 static int i;
 public static void main(String[] args)
 {
 int k = 10;
 foo(k);
 }
 public static void foo(int in)
 {
 bar(in);
 }
 public static void bar(int in)
 {
 i = in;
 System.out.println("bar");
 }
}

Sample.main
args, k

Sample.foo
in

Sample.bar
in, i

System.out.println
this, “bar”

static int i;

Active Stack
Frame

J. Bell GMU CS 475 Spring 2019

• A process has some mapping into the physical machine (machine state)
• Provide two key abstractions to programs:

• Logical control flow
• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

• Private address space
• Each program seems to have exclusive use of main memory.
• Provided by kernel mechanism called virtual memory

!14

Process Representation

CPU
Registers

Memory

Stack
Heap

Code
Data

J. Bell GMU CS 475 Spring 2019

• Address space
• Child duplicate of parent
• Child has a program loaded into it

• UNIX examples
• fork() system call creates new process
• exec() system call used after a fork() to replace the process’ memory

space with a new program

!15

Creating Processes

J. Bell GMU CS 475 Spring 2019

• Process executes last statement and then asks the operating system to delete
it using the exit() system call.

• Returns status data from child to parent (via wait())
• Process’ resources are deallocated by operating system

• Parent may terminate the execution of children processes using the abort()
system call. Some reasons for doing so:

• Child has exceeded allocated resources
• Task assigned to child is no longer required
• The parent is exiting and the operating systems does not allow a child to

continue if its parent terminates

!16

Process Termination

J. Bell GMU CS 475 Spring 2019 !17

CPU Switching from Process to Process
Memory

Stack

Heap

Code
Data

CPU

Registers

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

J. Bell GMU CS 475 Spring 2019

• We might want two processes to seriously work together
• For example:

• Information sharing
• Computation speedup
• Modularity
• Convenience

• Signals are very, very NOT sufficient for these purposes
• What we need is interprocess communication (IPC)

!18

Interprocess Communication

J. Bell GMU CS 475 Spring 2019

• Paradigm for cooperating processes, producer process produces information
that is consumed by a consumer process

• unbounded-buffer places no practical limit on the size of the buffer
• bounded-buffer assumes that there is a fixed buffer size

• Producer writes to a buffer, consumer reads
• Buffer is just a chunk of memory

!19

Producer-Consumer Model

J. Bell GMU CS 475 Spring 2019

• Producer writes to a file
• Consumer reads from same file

!20

Strawman IPC

Producer Consumer

File

Write
Read

J. Bell GMU CS 475 Spring 2019

• Does it work? Yes
• Is it cumbersome (and perhaps error-prone)? Yes

• What happens if consumer reads while producer is writing?
• Is it efficient?

• No
• Argument:

!21

Strawman IPC

CPU 1

CPU 2

thread0()

thread1()

Main
Memory

CPU 1 Cache

CPU 2 Cache

100ns7ns SSD

150,000ns (just to read 4KB)

Magnetic HD

10,000,000ns (just to seek!)

J. Bell GMU CS 475 Spring 2019

• Shared memory
• Strawman, but the “file” is just a hunk of memory that’s shared between

processes
• Message Passing

• Abstraction on top of shared memory: producer sends messages to
consumer

!22

Improving on the Strawman

J. Bell GMU CS 475 Spring 2019 !23

Message Passing & Shared Memory

Message Passing Shared Memory

Fig © Silberschatz, Galvin and Gagne

J. Bell GMU CS 475 Spring 2019

• As high performance as you can get
• Each process directly reads/writes memory, which happens to be shared

• Can become confusing to program (correctly)
• Which variables exactly are shared?
• What happens if I copy a pointer to (non-shared) memory into shared

memory?
• What happens if producer/consumer read/write simultaneously?

!24

Shared Memory

J. Bell GMU CS 475 Spring 2019

• Mechanism for processes to communicate and to synchronize their actions
• Message system – processes communicate with each other without resorting

to shared variables
• IPC facility provides two operations:

• send(message)
• receive(message)

• The message size is either fixed or variable
• Messaging system can be arbitrarily complex, adding additional features

!25

Message Passing

J. Bell GMU CS 475 Spring 2019

• If processes P and Q wish to communicate, they need to:
• Establish a communication link between them
• Exchange messages via send/receive

• On a single machine, this is usually done by creating a named mailbox (or
"port")

• Key implementation questions:
• Are sending and/or receiving blocking, or non-blocking?
• Is there a message queue?

!26

Message Passing

J. Bell GMU CS 475 Spring 2019

• Message passing may be either blocking or non-blocking
• Blocking is considered synchronous

• Blocking send -- the sender is blocked until the message is received
• Blocking receive -- the receiver is blocked until a message is available

• Non-blocking is considered asynchronous
• Non-blocking send -- the sender sends the message and continue
• Non-blocking receive -- the receiver receives:

• A valid message, or
• Null message

• Different combinations possible
• E.g. both send and receive are blocking, only one, neither

!27

Syncronous and Asynchronous

Blocking Send (Synchronous)

Process 1 Process 2
Message

OK, I’m ready

Message

OK, I’m ready

Non Blocking Send
(Asynchronous)

Process 1 Process 2
MessageMessage

J. Bell GMU CS 475 Spring 2019

• Traditional processes created and managed by the OS kernel
• Process creation expensive - fork system call in UNIX
• Context switching expensive
• Cooperating processes - no need for memory protection (separate address

spaces)

!30

Threads

J. Bell GMU CS 475 Spring 2019 !31

Processes vs Threads

code heap
data files

stack

code heap
data files

stack stackstack

Single-Threaded Process Multi-Threaded Process

J. Bell GMU CS 475 Spring 2019

• Run multiple tasks seemingly at once
• Update UI
• Fetch data
• Respond to network requests

• Process creation: heavyweight, thread creation: lightweight
• Improve responsiveness, scalability
• Concurrency + Parallelism

!32

What do we use threads for?

J. Bell GMU SWE 622 Spring 2017

Threads: Memory View

 33

code heap
data files

stack

code heap
data files

stack stackstack

Single-Threaded Process Multi-Threaded Process

Each thread might be executing the same code, but with different local
variables (and hence doing different stuff)

m1

m2

m3

m4

m1

m2

m3

m4

m1

m2

m3

m4

m1

m2

m3

m4

Heap data: still shared between threads

J. Bell GMU SWE 622 Spring 2017

Threads: Memory View

 34

code heap
data files

stack

code heap
data files

stack stackstack

Single-Threaded Process Multi-Threaded Process

Each thread might be executing totally different code, too

m1

m2

m3

m4

m1

m2

m3

m4

a1

a2

a3

b1

b2

J. Bell GMU CS 475 Spring 2019

• Context Switching
• Processor context: The minimal collection of values stored in the registers of

a processor used for the execution of a series of instructions (e.g., stack
pointer, addressing registers, program counter).

• When switching processes, all of that data needs to get flushed out (by the
OS)

• Threads share the same address space: no need to do this switch

!35

Processes vs Threads

J. Bell GMU CS 475 Spring 2019

• How threads and processes are similar
• Each has its own logical control flow.
• Each can run concurrently.
• Each is context switched.

• How threads and processes are different
• Threads share code and data, processes (typically) do not.
• Threads are somewhat less expensive than processes.
• Process control (creating and reaping) is (ballpark!) twice as expensive as

thread control.

!36

Processes vs Threads

J. Bell GMU CS 475 Spring 2019

• Same two high level options as processes: shared memory or message
passing

• Shared memory:
• Things are shared by default!

• Message passing:
• Programmer manually says what to share

• We will focus on the simple shared memory approach, but keep in mind other
options too

!37

Thread Communication

J. Bell GMU CS 475 Spring 2019

• Thread library provides programmer with API for creating and managing
threads

• Two primary ways of implementing
• Library entirely in user space
• Kernel-level library supported by the OS

!38

Thread Libraries

J. Bell GMU CS 475 Spring 2019

• May be provided either as user-level or kernel-level
• A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization
• Specification, not implementation
• API specifies behavior of the thread library, implementation is up to

development of the library
• Common in UNIX operating systems (Solaris, Linux, Mac OS X)

!39

Pthreads

J. Bell GMU CS 475 Spring 2019 !40

Pthreads Example
/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"

void *thread(void *vargp);

int main() {
 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

/* thread routine */
void *thread(void *vargp) {
 printf("Hello, world!\n");
 return NULL;
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

return value
(void **p)

J. Bell GMU CS 475 Spring 2019

• In Java, make a new thread by instantiating the class java.lang.Thread
• Pass it an object that implements Runnable
• When you call thread.start(), the run() method of your runnable is called, from

a new thread
• join() waits for a thread to finish

!41

Threads in Java

Thread t = new Thread(new Runnable() {
@Override
 public void run() {

//This code will now run in a new thread
 }
});
t.start();

J. Bell GMU CS 475 Spring 2019

• JVM manages threads (maybe uses Pthreads underneath)
• Each Java app gets at least one thread: main

• Plus, likely a finalizer thread
• Plus, the JVM itself makes a ton of threads that you can’t see

• JIT compiler, garbage collector mainly
• Fun tip: look at what threads are running in a Java app using the command-

line jstack program

!42

Threads in Java

J. Bell GMU CS 475 Spring 2019 !43

Threads in Java
public static void main(String[] args) throws InterruptedException {
Thread t = new Thread(new Runnable() {

 @Override
 public void run() {

 //This code will now run in a new thread
 System.out.println("Hello from the thread!");
 }
 });
 t.start();
 System.out.println("Hello from main!”); 
 t.join();
}

#1 Hello from the thread!  
Hello from main!

#2 Hello from main! 
Hello from the thread!

What is the output of this code?

This is a race condition

J. Bell GMU CS 475 Spring 2019

• Threads execute separate logical segments of code
• How do they talk to each other?

!44

Thread Communication

public static void main(String[] args) throws InterruptedException {
Thread t = new Thread(new Runnable() {

 @Override
 public void run() {

 //This code will now run in a new thread
 System.out.println("Hello from the thread!");
 }
 });
 t.start();
 System.out.println("Hello from main!”); 
 t.join();
}

J. Bell GMU CS 475 Spring 2019 !45

Shared Variables in Threads

code heap
data files

stack stackstack

Multi-Threaded Process

m1

m2

m3

m4

a1

a2

a3

b1

b2

J. Bell GMU CS 475 Spring 2019

Live Programming
Example - Threads

J. Bell GMU CS 475 Spring 2019

• The problem: What if we have thousands of tasks to do simultaneously,
should we make a new thread for each?

• No (lots of overhead, probably too many threads)
• The answer: think about work as tasks and not threads

• Threads will magically appear to do your tasks
• Tasks -> Runnable and Callable objects
• ExecutorService handles taking tasks and running them

!47

Splitting up the work

J. Bell GMU CS 475 Spring 2019

Live Programming
Example -

ExecutorService

J. Bell GMU CS 475 Spring 2019

• Most locks are reentrant: if you hold it, and ask for it again, you don’t have to
wait (because you already have it)

• Basic primitives:
• synchronized{}
• wait
• notify

• Plus…
• Lock API… lock.lock(), lock.unlock()
• The preferred way

!49

Locking in Java

Synchronized methods in
Java

public synchronized static void increment()
{
 i = i + 1;
} Result: Before entering

increment(), thread gets a lock
on the Class object of

increment()

Synchronized methods in
Java

public synchronized static void increment()
{
 i = i + 1;
} Result: Before entering

increment(), thread gets a lock
on the Class object of

increment()
public synchronized static void incrementOther()
{
 j = j + 1;
} Result: Before entering

incrementOther(), thread gets a
lock on the Class object of

incrementOther()

Problem?

J. Bell GMU CS 475 Spring 2019

• Can also use any object as that monitor

!52

Synchronized blocks in Java

static Object someObject = new Object();
public static void increment()
{
 synchronized(someObject){
 i = i + 1;
 }
}
static Object someOtherObject = new Object();
public static void incrementOther()
{
 synchronized(someOtherObject){
 j = j + 1;
 }
}

Now, two different threads could call increment() and incrementOther() at the same
time

J. Bell GMU CS 475 Spring 2019

• Synchronized gets messy: what happens when you need to synchronize
many operations? What if we want more complicated locking?

• ReentrantLock: same semantics as synchronized

!53

Java Lock API

static ReentrantLock lock = new ReentrantLock();
public static void increment()
{
 lock.lock();
 try{
 i = i + 1;
 } finally{
 lock.unlock();
 }
}

J. Bell GMU CS 475 Spring 2019

• BIG design question in writing concurrent programs: how many locks should
you have?

• Example: Distributed filesystem
• It would be correct to block all clients from reading any file, when one client

writes a file
• However, this would not be performant at all!
• It would be much better to instead lock on individual files

• More locks -> more complicated semantics and tricky to avoid deadlocks,
races

!54

Locking Granularity

J. Bell GMU CS 475 Spring 2019

• Identifies performance gains from adding additional cores to an application
that has both serial and parallel components

• S is serial portion
• N processing cores
• That is, if application is 75% parallel / 25% serial, moving from 1 to 2 cores

results in speedup of 1.6 times
• As N approaches infinity, speedup approaches 1 / S
• Serial portion of an application has disproportionate effect on performance

gained by adding additional cores

!55

Amdahl's Law

J. Bell GMU CS 475 Spring 2019

• Ten processors
• 60% concurrent, 40% sequential
• How close to 10-fold speedup?

!56

Example

J. Bell GMU CS 475 Spring 2019

• Ten processors
• 60% concurrent, 40% sequential
• How close to 10-fold speedup?

!57

Example

10
6.06.01

1

+−
Speedup=2.17=

J. Bell GMU CS 475 Spring 2019

• Ten processors
• 80% concurrent, 20% sequential
• How close to 10-fold speedup?

!58

Example

10
8.08.01

1

+−
Speedup=3.57=

J. Bell GMU CS 475 Spring 2019

• Ten processors
• 90% concurrent, 10% sequential
• How close to 10-fold speedup?

!59

Example

10
9.09.01

1

+−
Speedup=5.26=

J. Bell GMU CS 475 Spring 2019

• Ten processors
• 99% concurrent, 01% sequential
• How close to 10-fold speedup?

!60

Example

10
99.099.01

1

+−
Speedup=9.17=

J. Bell GMU CS 475 Spring 2019

• Making good use of our multiple processors (cores) means
• Finding ways to effectively parallelize our code

– Minimize sequential parts
– Reduce idle time in which threads wait without

– This will be a constant theme throughout the course!

!61

The Moral

J. Bell GMU CS 475 Spring 2019

• Weds: Mutual Exclusion - from a technical (not lochness monster) perspective
• Reminder: HW1 Out

• https://www.jonbell.net/gmu-cs-475-spring-2019/homework-1

!62

Roadmap

https://www.jonbell.net/gmu-cs-475-spring-2019/homework-1

J. Bell GMU CS 475 Spring 2019

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

!63

This work is licensed under a Creative Commons Attribution-
ShareAlike license

http://creativecommons.org/licenses/by-sa/4.0/

