Processes & Threads

CS 475, Spring 2019
Concurrent & Distributed Systems

With material from Herlihy &
Shavit, Art of Multiprocessor
Programming

J. Bell

If two threads run the same code (at once), what is the
value of i at the end?

static int 1 = 0;
public static void increment()

{
}

1 =1+ 1;

Is it guaranteed to be 2? No - it can also be 1 at the end!

GMU CS 475 Spring 2019

Mutual Exclusion

Thread 1 Thread 2

increment() increment()

read 1 =0

write | = 1 read | = 0
write 1 =1

This is one possible interleaving

The Problem

Art of Multiprocessor
Programming

J. Bell GMU CS 475 Spring 2019

Flag Protocol

®gp

Art of Multipro
Progr mmg

GMU CS 475 Spring 2019

Alice’s Protocol (sort of)

|

Art of Multiprocessor
Programming

GMU CS 475 Spring 2019

Bob’s Protocol (sort of)

o | ’- rahii

Art of Multipro
Progra m9

GMU CS 475 Spring 2019

Alice’s Protocol Bob’s Protocol

e Raise flag * Raise flag

* Wait until Bob's tflag is down o Wait until Alice’s tlag is down
 Unleash pet * Unleash pet

* [ower tflag when pet returns * Lower flag when pet returns&

After you! No, no... after you!

J. Bell GMU CS 475 Spring 2019

Alice’s Protocol Bob’s Protocol

e Raise flag * Raise flag

* Wait until Bob's tflag is down o Wait until Alice’s tlag is down
 Unleash pet * Unleash pet

 [ower tflag when pet returns * Lower flag when pet returns&

After you! No, no... after you!

J. Bell GMU CS 475 Spring 2019

Alice’s Protocol Bob’s Protocol @« try)

* Raise flag * Raise flag
e Wait until Bob’s flag is down * While Alice's tlag is up
» Unleash pet - Lower ﬂag.
- Wait for Alice’s flag to
 [ower tflag when pet returns go down
- Raise flag

e Unleash pet

* |ower flag when pet
returns

J. Bell GMU CS 475 Spring 2019 O

J. Bell

Rev

IeW

Abstractions

& Keynote File Edit Insert

Slide Format Arange View Play Share Window Help

32 Q N5 % Mon 2:20PM Q

tel.

4th Gen
Intel® Core™ i7

Q@

Operating Systems - Three Easy Pieq
To Everyone
To Educators
To Students
Acknowledgments
Final Words
References
A Dialogue on the Book
b Introduction to Operating Systems
¥ Virtualization
A Dialogue on Virtualization
b The Abstraction: The Pracess.
b Interlude: Process APl
» Mechanism: Limited Direct Execuf
b Scheduling: Introduction
» Scheduling: The Multi-Level Feed
» Scheduling: Proportional Share
» Multiprocessor Scheduling (Advar
‘Summary Dialogue on CPU Virtual
A Dialogue on Memory Virtualizatl
b The Abstraction: Address Spaces,
> Interlude: Memory API
» Mechanism: Address Translation
» Segmentation
b Free-Space Management
» Paging: Introduction
» Paging: Faster Translations (TLBs|
» Paging: Smaller Tables
» Beyond Physical Memory: Mechar
» Beyond Physical Memory: Policies
b The VAX/VMS Virtual Memory Sys
‘Summary Dialogue on Memory Vit
» Concurrency

» Persistence

GMU CS 475 Spring 2019

66% + > an

pointer, addressing registers,

* When switching processes, all
of that data needs to get
flushed out (by the OS)

+ Thraade chara tha cama sddrace.

To
P

-C
A

Seminar-VT-
Bell.DOC

By
Vi

sanv |+ > =0
Zoom Add Siide Play Keynote Live
= rewn gata
*Respond to network requests
“Improve responsiveness,
scal
*Recurring problems:
« Coordination: what is shared,
when, and how?
Abstractions
«Goal: take something
complicated, make it “easy”
*Operating Systems.
« From CPUs and memory to
processes and threads
« Distributed Systems
« From collections of
computers to coherent
Abstractions.
Concurrency & Parallelism
Processes
*Def: A process is an instance of a
running program
«Process provides each program
with two key abstractions
« Logical control flow
* Each program seems to
have exclusive use of the

« Private address space
* Each program seems to
have exclusive use of main
memory.
*How are these illusions
maintained?
« Process executions
interleaved (multitasking)
« Address spaces managed by
virtual memory system
Processes
Threads 2 bl

Lecture 1 —

l T] & =
Toble Chart Text Shape Media Comment

Abstractions

GMU CS 475 Spring 2018

certificate.pdf

—
O provides to users: the process. The definition of a process, i 4
is quite simple: itis a running program [V+65,870]. The program itself is
a lifeless thing; it just sits there on the disk, a bunch of instructions (and
maybe some static data), waiting to spring into action. It is the operating
system that takes these bytes and gets them running, transforming the
program into something useful.

It turns out that one often wants to run more than one program at
once; for example, consider your desktop or laptop where you might like
to run a web browser, mail program, a game, a music player, and so forth.
In fact, a typical system may be seemingly running tens or even hundreds
of processes at the same time. Doing so makes the system easy to use, as
one never need be concerned with whether a CPU is available; one simply
runs programs. Hence our challenge:

THE CRUX OF THE PROBLEM:
How To PROVIDE THE ILLUSION OF MANY CPUs?
Although there are only a few physical CPUs available, how can the
OS provide the illusion of a nearly-endless supply of said CPUs?

The OS creates this illusion by virtualizing the CPU. By running one
process, then stopping it and running another, and so forth, the OS can
promote the illusion that many virtual CPUs exist when in fact there is
only one physical CPU (or a few). This basic technique, known as time
sharing of the CPU, allows users to run as many concurrent processes as
they would like; the potential cost is performarice, as cach will run more
slowly if the CPU(s) must be sharey

To implement virtualization of the CPU, and to implement it well, the
08 will need both some low-level machinery as well as some high-level
intelligence. We call the low-level machinery mechanisms; mechanisms
are low-level methods or protocols that implement a needed piece of

25

marriage

itions Besity

Click to add notes

ish (United States)

A Jon Bell

@ Dashboard

@ Custom CSS

CSTEST

cs 8

+ New ViewPage @& MapsMarker

07 Add Media f Add Map

@
Collaborate

O slider Revolution 8

ollapse menu

20
21

22
23
24
25
26

27

s K3l o

Format A

Transitions

ate Document

jonbell.net <

2018 (9 unread) Dashboard « Jon Bell — WordPress

visual Text

raise a discussion with the instructor.

tte HW assignments will only be accepted for 24 hours after the due date. HW

te will receive a zero. If you're worried about being busy around the time of a HW

Start Transition Delay

On Click <]

Build Order

2/7/18 Threads in Java

2/12/18 Synchronization in Java
2/14/18 ' Performance

2/19/18 Parallel Programming Models
2/21/18 Client/Server Programming
2/26/18 Network Fundamentals
2/28/18 RMI & RPC

3/5/18 | REST & Web Services

3/7/18 Midterm

3/19/18 Time and Coordination
3/21/18 Consensus

3/26/18 Transactions

3/28/18 Tault Tolerance
4/2/18 Consistency (Strict)

4/4/18 Consistency (Relaxed)

4/9/18 Atomicity

4/11/18 Microservices

4/16/18 Distributed Systems Case Studies

Authentication

4/23/18 Security:

4/25/18 Security: Authorization
4/30/18 P2P

5/2/18 Review

table » thody » tr » td
Word count: 998

Homework that does not compile or run will receive at most 50% credit.

{the above rules.

It quizzes that support the material being presented. These quizzes and activities are
(and the class as a whole) are understanding the material that day. These quizzes will be

the quiz, and you get the marks, or you did not take the quiz, and do not get the marks

full credit, regardless of what the answers are). You must be present in class to take the

considered an honor code violation). You can miss up to three quizzes with no penalty.

phone to class so that you can participate in the activities

Notes Slides
rency. PDF | Keynote
Suggested reading: OS-TEP Ch 4
HW10ut

HW1 Due, HW2 Out

HW?2 Due, HW3 out:

Spring Break!

HW3 Due, HW4 Out

HW4 Due, HW5 Out

HW 5 Due

Last edited by Jon on January 22, 2018 at 3:15 pm

~T@ARN LeEmMPOrI PW

otes W Comments EP 22 & - —— + 124% 0@

1 of 40 selected, 543.2 GB available

Edit Page < Jon Bell — WordPress

Howdy, Jon Il

Publish a

Preview Changes
9 Status: Published Edit
® Visibility: Public Edit

€D Revisions: 14 Browse

Published on: Nov 12, 2017 @ 10:29

Move to Trash Update

Page Attributes N

Parent

(no parent) +
Template

Default Template &

Order

0
No Build Effects

Need help? Use the Help tab above the
screen title.

Featured Image A

Set featured image

Sidebar Settings N

Start Delay

022016.xIsm

Today

 \What OS abstractions do we use tor concurrency and parallelism?
e [hreads
 Processes

 Reading: H&S 1.5

* Note: HW1 posted: https://www.jonbell.net/gmu-cs-475-spring-2019/
homework-1/

J. Bell GMU CS 475 Spring 2019

11

https://www.jonbell.net/gmu-cs-475-spring-2019/homework-1
https://www.jonbell.net/gmu-cs-475-spring-2019/homework-1

Processes

* Def: A process is an instance of a running program
* Process provides each program with two key abstractions
* Logical control flow
 Each program seems to have exclusive use of the CPU.
* Private address space
 Each program seems to have exclusive use of main memory.
 How are these illusions maintained?
* Process executions interleaved (multitasking)
* Address spaces managed by virtual memory system

J. Bell GMU CS 475 Spring 2019

12

Processes

static int 1;

public class Sample

{
static int 1;
public static void main(String[] args)
{
| int k = 10:;
Active Stack \ foo(k);
Frame Sample.mam public static void foo(int in)
args, K {
bar(in);
s
Sample.foo public static void bar(int in)
in {
1 = 1n;
Sample.bar System.out.println("bar");
L +
n, | 1

System.out.println
this, “bar”

J. Bell GMU CS 475 Spring 2019

Process Representation

* A process has some mapping into the physical machine (machine state)
 Provide two key abstractions to programs:
* [ogical control flow
 Each program seems to have exclusive use of the CPU
 Provided by kernel mechanism called context switching
 Private address space
e Each program seems to have exclusive use of main memory.
 Provided by kernel mechanism called virtual memory

CPU

J. Bell GMU CS 475 Spring 2019

14

Creating Processes

 Address space

e Child duplicate of parent

 Child has a program loaded into it
 UNIX examples

« fork() system call creates new process

« exec() system call used after a fork() to replace the process’ memory
space with a new program

parent : resumes
walt 2

child exec() »

J. Bell GMU CS 475 Spring 2019

15

Process lermination

 Process executes last statement and then asks the operating system to delete
it using the exit () system call.

« Returns status data from child to parent (via wait())
 Process’ resources are deallocated by operating system

« Parent may terminate the execution of children processes using the abort()
system call. Some reasons for doing so:

 Child has exceeded allocated resources
e Jask assigned to child is no longer required

 [he parentis exiting and the operating systems does not allow a child to
continue If its parent terminates

J. Bell GMU CS 475 Spring 2019

16

CPU Switching from Process to Process

J. Bell

Memory

Stack

Heap

Data ="

Code

Saved
registers

Saved
registers

Registers

Stack

Heap

Data

Code

Saved
registers

GMU CS 475 Spring 2019

Interprocess Communication

 We might want two processes to seriously work together
* [Or example:

e |[nformation sharing

e Computation speedup

 Modularity

e Convenience
o Signals are very, very NOT sufficient for these purposes
 \What we need is interprocess communication (IPC)

J. Bell GMU CS 475 Spring 2019

18

Producer-Consumer Model

o Paradigm for cooperating processes, producer process produces information
that Is consumed by a consumer Process

 unbounded-buffer places no practical [imit on the size of the buffer
 bounded-buffer assumes that there is a fixed bufter size
 Producer writes to a buffer, consumer reads
o Buffer is just a chunk of memory

J. Bell GMU CS 475 Spring 2019 19

J. Bell

Strawman IPC

Producer writes to a file
Consumer reads from same file

Producer

Write
Read

GMU CS 475 Spring 2019

20

Strawman IPC

e [s it cumbersome (and perhaps error-prone)? Yes

e Does it work? Yes

 \What happens if consumer reads while producer is writing”?
e [s it efficient?
* NO

e Argument:
CPU 1

thread0() CPU 1 Cache £—199Ns

CPU 2

150,000ns (just to read 4KB)

>
<

10,000,000ns (just to seek!)

>
<

thread1() CPU 2 Cache

J. Bell GMU CS 475 Spring 2019

21

Improving on the Strawman

e Shared memory

o Strawman, but the “file” is just a hunk of memory that's shared between
DrOCEesSses

 Message Passing

* Abstraction on top of shared memory: producer sends messages to
consumer

J. Bell GMU CS 475 Spring 2019

22

Message Passing & Shared Memory

J. Bell

process A

process B

message queue

My

M4 (Mo M3 ...

My

kernel

Message Passing

GMU CS 475 Spring 2019

process A

.

shared memory

process B

kernel

Shared Memory

Fig © Silberschatz, Galvin and Gagne

23

Shared Memory

* As high performance as you can get

o Each process directly reads/writes memory, which happens to be shared
 (Can become confusing to program (correctly)

* \Which variables exactly are shared?

 \What happens if | copy a pointer to (non-shared) memory into shared
memory?

* \What happens if producer/consumer read/write simultaneously?

J. Bell GMU CS 475 Spring 2019

24

J. Bell

Message Passing

Mechanism for processes to communicate and to synchronize their actions

Message system — processes communicate with each other without resorting
to shared variables

|IPC tfacility provides two operations:
* send(message)
* recelve(message)

The message size Is either tixed or variable

Messaging system can be arbitrarily complex, adding additional features

GMU CS 475 Spring 2019

25

Message Passing

e |f processes P and Q wish to communicate, they need to:
o Establish a communication link between them
 Exchange messages via send/receive

 On a single machine, this is usually done by creating a named mailbox (or
"port")

o Key Implementation questions:
* Are sending and/or receiving blocking, or non-blocking?
* |sthere a message queue”

J. Bell GMU CS 475 Spring 2019

26

Syncronous and Asynchronous

* Message passing may be either blocking or non-blocking
* Blocking is considered synchronous
* Blocking send -- the sender is blocked until the message is received
* Blocking receive -- the receiver is blocked until a message Is available
* Non-blocking is considered asynchronous
* Non-blocking send -- the sender sends the message and continue
* Non-blocking recelve -- the receliver receives:
« Avalid message, or
 Null message
* Ditferent combinations possible
* E.g. both send and receive are blocking, only one, neither

J. Bell GMU CS 475 Spring 2019

Blocking Send (Synchronous)

Message

Process 1 Process 2

Non Blocking Send
(Asynchronous)

Message

Process 1 Process 2

J. Bell

Threads

Traditional processes created and managed by the OS kernel
Process creation expensive - fork system call in UNIX

Context switching expensive

Cooperating processes - no need for memory protection (separate address
spaces)

GMU CS 475 Spring 2019

30

J. Bell

Processes vs Threads

heap .

stack stack stack

Single-Threaded Process Multi-Threaded Process

GMU CS 475 Spring 2019

31

What do we use threads for?

 Run multiple tasks seemingly at once
 Update Ul
* etch data
 Respond to network requests
 Process creation: heavyweight, thread creation: lightweight
* Improve responsiveness, scalability
 Concurrency + Parallelism

J. Bell GMU CS 475 Spring 2019

32

Threads: Memory View

Heap data: still shared between threads

stack stack stack

Single-Threaded Process Multi-Threaded Process

Each thread might be executing the same code, but with different local
variables (and hence doing different stuff)

J. Bell GMU SWE 622 Spring 2017

33

Threads: Memory View

stack stack stack

Single-Threaded Process Multi-Threaded Process

Each thread might be executing totally different code, too

J. Bell GMU SWE 622 Spring 2017

34

Processes vs Threads

» (Context Switching

* Processor context: The minimal collection of values stored in the registers of
a processor used for the execution of a series of instructions (e.g., stack
pointer, addressing registers, program counter).

* When switching processes, all of that data needs to get flushed out (by the
0S)

 [hreads share the same address space: no need to do this switch

J. Bell GMU CS 475 Spring 2019 35

Processes vs Threads

e How threads and processes are similar
 Each has its own logical control flow.
e Each can run concurrently.
e Each Is context switched.
 How threads and processes are different
 Threads share code and data, processes (typically) do not.
 [hreads are somewhat less expensive than processes.

* Process control (creating and reaping) is (ballpark!) twice as expensive as
thread control.

J. Bell GMU CS 475 Spring 2019

36

Thread Communication

e Same two high level options as processes: shared memory or message
passing

* Shared memory:
 Things are shared by default!
» Message passing:
 Programmer manually says what to share

 We will focus on the simple shared memory approach, but keep in mind other
options too

J. Bell GMU CS 475 Spring 2019

37

Thread Libraries

 Thread library provides programmer with API for creating and managing
threads

e [woO primary ways of implementing
o Library entirely in user space
o Kernel-level library supported by the OS

J. Bell GMU CS 475 Spring 2019

38

J. Bell

Pthreads

May be provided either as user-level or kernel-level
A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization
Specification, not implementation

APl specities behavior of the thread library, implementation is up to
development of the library

Common in UNIX operating systems (Solaris, Linux, Mac OS X)

GMU CS 475 Spring 2019

39

J. Bell

Pthreads Example

/*
* hello.c — Pthreads "hello, world" program
x/

#1include "csapp.h”

: , Thread attributes
void *xthread(void sxvargp); (usually NULL)

int main() {
pthread_t tid;

Thread arguments

/ (void *p)

Pthread create(&tid, NULL, thread, NULL)'

Pthread_join(tid, NULL)T\\\\\\\\\\\\\\\\\ S
. . return vaiue
exit(0); (void **p)

/* thread routine x/

void xthread(void *xvargp) {
printf("Hello, world!\n");
return NULL;

}

GMU CS 475 Spring 2019

40

J. Bell

Threads In Java

In Java, make a new thread by instantiating the class java.lang. Ihread
Pass It an object that implements Runnable

When you call thread.start(), the run() method of your runnable is called, from
a new thread

join() waits for a thread to finish

Thread t = new Thread(new Runnable() {
@Override

public void run() {

//This code will now run in a new thread

I3
1)
t.start();

GMU CS 475 Spring 2019

41

Threads In Java

 JVM manages threads (maybe uses Pthreads underneath)
 Each Java app gets at least one thread: maln
* Plus, likely a finalizer thread
e Plus, the JVM itself makes a ton of threads that you can't see
e JIT compiler, garbage collector mainly

* [Fun tip: look at what threads are running in a Java app using the commana-
ine Jstack program

J. Bell GMU CS 475 Spring 2019

42

J. Bell

Threads In Java

public static void main(String[] args) throws InterruptedException A{
Thread t = new Thread(new Runnable() {
@Override
public void run() {
//This code will now run 1n a new thread
System.out.println("Hello from the thread!");

}
H);
t.start();
System.out.println("Hello from main!");

t.join();

What is the output of this code”

Hello from the thread!

#1 This IS a race condition

Hello from main!

Hello from main!

#2 Hello from the thread!

GMU CS 475 Spring 2019

43

Thread Communication

 Threads execute separate logical segments of code
 How do they talk to each other?

public static void main(Stringl[] args) throws InterruptedException {
Thread t = new Thread(new Runnable() {
@Override
public void run() A
//This code will now run in a new thread
System.out.println("Hello from the thread!");

}
});
t.start();
System.out.println("Hello from main!”);

t.join();

J. Bell GMU CS 475 Spring 2019

44

J. Bell

Shared Variables in Threads

stack stack stack

Multi-Threaded Process

GMU CS 475 Spring 2019

45

Live Programming
Example - Threads

GMU CS 475 Spring 2019

Splitting up the work

 The problem: What if we have thousands of tasks to do simultaneously,
should we make a new thread tor each?

* No (lots of overhead, probably too many threads)
 [he answer: think about work as tasks and not threads
 [hreads will magically appear to do your tasks
* [asks -> Runnable and Callable objects
ExecutorService handles taking tasks and running them

J. Bell GMU CS 475 Spring 2019

47

Live Programming
Example -
ExecutorService

GMU CS 475 Spring 2019

Locking In Java

 Most locks are reentrant: it you hold it, and ask for it again, you don't have to
walit (because you already have it)

e Basic primitives:
« synchronized{}
e wailt
« notity
 Plus...
e Lock API... 1lock.lock(), lock.unlock()

 The preferred way

J. Bell GMU CS 475 Spring 2019

49

Synchronized methods in
Java

public synchronized static void increment()

{
i=1+ 1

} Result: Before entering
increment (), thread gets a lock

on the Class object of
increment ()

Synchronized methods in

?ublic synchronized static void increment()
L = 1 + 1; -
yoo Result: Before entering
increment (), thread gets a lock
on the Class object of
increment()
gublic synchronized static void incrementOther()
j =3+ 1 ,
b Result: Before entering

incrementOther(), thread gets a

lock on the Class object of
incrementOther()

Problem?

Synchronized blocks in Java

 (Can also use any object as that monitor

static Object someObject = new Object();
public static void increment()
{
synchronized(someObject){
1 =1+ 1;
I3

I3
static Object someOtherObject = new Object();

public static void incrementOther()

{
synchronized(someOtherObject){
] =31+ 1;
}
}
Now, two ditferent threads could call increment() and incrementOther() at the same

time

J. Bell GMU CS 475 Spring 2019 52

Java Lock API

 Synchronized gets messy: what happens when you need to synchronize
many operations? What it we want more complicated locking”

e ReentrantLock: same semantics as synchronized

static ReentrantLock lock = new ReentrantLock();
public static void increment()

{
lock. lock();

tryq
i=1+ 1;
} finally{
lock.unlock();
s

}

J. Bell GMU CS 475 Spring 2019

53

Locking Granularity

o BIG design question in writing concurrent programs: how many locks should
you have”

o Example: Distributed filesystem

* |t would be correct to block all clients from reading any file, when one client
writes a file

 However, this would not be performant at all!
e |t would be much better to instead lock on individual files

 More locks -> more complicated semantics and tricky to avoid deadlocks,
races

J. Bell GMU CS 475 Spring 2019

54

J. Bell

Amdanl's Law

|[dentifies performance gains from adding additional cores to an application
that has both serial and parallel components

S IS serial portion 1

speedup < o2 9
"N

N processing cores

That is, if application is 75% parallel / 25% serial, moving from 1 to 2 cores
results in speedup of 1.6 times

As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on performance
gained by adding additional cores

GMU CS 475 Spring 2019 55

Example

* [en processors
* 60% concurrent, 40% sequential
 How close to 10-fold speedup?

J. Bell GMU CS 475 Spring 2019

56

Example

* [en processors
* 60% concurrent, 40% sequential
 How close to 10-fold speedup?

1

Speedup=2.17=
P P 1-0.6 +

J. Bell GMU CS 475 Spring 2019

0.6

10

57

Example

* [en processors
 80% concurrent, 20% sequential
 How close to 10-fold speedup?

1

Speedup=3.57-=
P P 1-0.8+

J. Bell GMU CS 475 Spring 2019

0.8

10

58

Example

* [en processors
* 90% concurrent, 10% sequential
 How close to 10-fold speedup?

1

Speedup=b5.26=
P P 1-09+

J. Bell GMU CS 475 Spring 2019

0.9

10

59

Example

* [en processors
* 99% concurrent, 01% sequential
 How close to 10-fold speedup?

1

=0 17-=
Speedup=9.17 009,

J. Bell GMU CS 475 Spring 2019

0.99

10

60

The Moral

* Making good use of our multiple processors (cores) means

* Finding ways to effectively parallelize our code
- Minimize sequential parts

- Reduce idle time in which threads wait without
- This will be a constant theme throughout the course!

J. Bell GMU CS 475 Spring 2019

61

Roadmap

e \Weds: Mutual Exclusion - from a technical (not lochness monster) perspective
« Reminder: HW1 Out

o https://www.jonbell.net/gmu-cs-475-spring-2019/homework-1

J. Bell GMU CS 475 Spring 2019 62

https://www.jonbell.net/gmu-cs-475-spring-2019/homework-1

This work is licensed under a Creative Commons Attribution-

ShareAlike license

e This work Is licensed under the Creative Commons Attribution-ShareAlike 4.0 International

e You are free to:

e Unc

J. Bell

¢ S

nare — copy

cense. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

and redistribute the material in any medium or format

e Adapt — remix, transform, and build upon the material
e for any purpos

e, even commercially.

er the following terms:

o Attribution — You must give appropriate credit, provide a link to the license, and indicate If

C
S

e S
contributions u

nanges were
uggests the |

hareAlike —

made. You may do so in any reasonable manner, but not in any way that
CEeNnsor endorses you Or your use.

f you remix, transform, or build upon the material, you must distribute your

nder the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that

legally restrict others from doing anything the license permits.

GMU CS 475 Spring 2019

63

http://creativecommons.org/licenses/by-sa/4.0/

