
Concurrent Programming Models

CS 475, Spring 2019

Concurrent & Distributed Systems

With material from Herlihy &
Shavit, Art of Multiprocessor

Programming

J. Bell GMU CS 475 Spring 2019

Review: Course Grained Locking

!2

honk!

a b d

c

Simple but hotspot + bottleneck

honk!

J. Bell GMU CS 475 Spring 2019

• Instead of using a single lock ..
• Split object into

– Independently-synchronized components
• Methods conflict when they access

– The same component …
– At the same time

Review: Fine-Grained Synchronization

!3

J. Bell GMU CS 475 Spring 2019

Review: Fine Grained Locking List

!4

a b c

J. Bell GMU CS 475 Spring 2019

• Search without locking …
• If you find it, lock and check …

– OK: we are done
– Oops: start over

• Evaluation
– Usually cheaper than locking
– Mistakes are expensive

Review: Optimistic Synchronization

!5

J. Bell GMU CS 475 Spring 2019

Review: Optimistic List

!6

b d ea

add(c)

J. Bell GMU CS 475 Spring 2019

• Postpone hard work
• Removing components is tricky

– Logical removal
• Mark component to be deleted

– Physical removal
• Do what needs to be done

Review: Lazy Synchronization

!7

J. Bell GMU CS 475 Spring 2019

Review: Lazy List

!8

a b c

Returns false, because b is marked. No need to
validate or lock or re-traverse

contains(b)

Intuition: Now can judge if b is in list ONLY by
looking at b, don’t also need to look at a

J. Bell GMU CS 475 Spring 2019

• How do we increase performance with parallelism?
• How do we split up our program into concurrent sections effectively?
• Different models for parallel computation
• Reading: H&S 16.1, 16.2

Today

!9

J. Bell GMU CS 475 Spring 2019

• What factors can impact performance?
• Limits imposed by physics
• Limits imposed by technology
• Limits imposed by economics

• These limits can force us to make tradeoffs
• Smaller chips are faster, but harder to dissipate heat
• Need to serve X clients, can only spend Y on CPUs

Designing for Performance

!10

J. Bell GMU CS 475 Spring 2019

• Capacity
• Consistent measure of a service’s size or amount of resources

• Utilization
• Percentage of that resource used for a workload

• Latency
• How long it takes an input to propagate through a system and

generate an output
• Throughput

• Work done per time

Performance Metrics

!11

} Adjusted by buying
m

ore resources

}

Adjusted by thinking
 hard about the problem

J. Bell GMU CS 475 Spring 2019

• In client/server model, latency is simply: time between client sending request
and receiving response

• What contributes to latency?
• Latency sending the message
• Latency processing the message
• Latency sending the response

• Adding pipelined components -> latency is cumulative

Latency

!12

Camera
Image ServiceSends images

Processes images

Phase 1 Phase 210ns
5ns

5ns

10ns Total latency: 30ns

J. Bell GMU CS 475 Spring 2019

• Measure of the rate of useful work done for a given workload
• Example:

• Throughput is camera frames processed/second
• When adding multiple pipelined components -> throughput is the minimum

value

Throughput

!13

Camera
Image ServiceSends images

Processes images

Phase 1 Phase 2
10fps 29fps

1000 fps

1000 fps

Total
throughput:

10fps

J. Bell GMU CS 475 Spring 2019

• Measure system to find which aspect of performance is lacking (throughput
or latency)

• Measure each component to identify bottleneck
• Identify if fixing that bottleneck will realistically improve system performance
• Measure improvement
• Repeat

Designing for Performance

!14

J. Bell GMU CS 475 Spring 2019

Improving Throughput

!15

Facebook.com
Request Cache

Check
Send

response
ResponseBuild

friends list
Build

Suggestions
Build

Newsfeed

J. Bell GMU CS 475 Spring 2019

• Introduce concurrency into our pipeline
• Each stage runs in its own thread (or many threads, perhaps)
• If a stage completes its task, it can start processing the next request right

away
• E.g. our system will process multiple requests at the same time

Improving Throughput

!16

Facebook.comRequest
Cache
Check

Send
response

Response
Build

friends list
Build

Suggestions
Build

Newsfeed

J. Bell GMU CS 475 Spring 2019

• Often more challenging than increasing throughput
• Examples:

• Physical - Speed of light (network transmissions over long distances)
• Algorithmic - Looking up an item in a hash table is limited by hash function
• Economic - Adding more RAM gets expensive

Reducing Latency

!17

J. Bell GMU CS 475 Spring 2019

• Buy low/sell high
• Most of skill is in knowing what a stock will do before your competitors

Latency & Stock Trading

!18

J. Bell GMU CS 475 Spring 2019

• Algorithmic trading -> computer programs look at various factors, place
trades automatically

• Example:
• President Trump tweets positively about a company -> price goes up
• Write a script to check twitter for company mentions, immediately buy/sell

stock
• Get in and out before it hits CNN!
• https://www.npr.org/sections/money/2017/04/07/522897876/meet-botus-

planet-money-s-stock-trading-twitter-bot

Latency & Stock Trading

!19

https://www.npr.org/sections/money/2017/04/07/522897876/meet-botus-planet-money-s-stock-trading-twitter-bot
https://www.npr.org/sections/money/2017/04/07/522897876/meet-botus-planet-money-s-stock-trading-twitter-bot

J. Bell GMU CS 475 Spring 2019

• This only works if you can make your trades before other people find out
• What if you set up this bot in Chicago, and I set one up in NYC?

• I would beet you to it, every time.

Latency & Stock Trading

!20

J. Bell GMU CS 475 Spring 2019

• What is the speed of light?
• ~300,000 km/sec

• How fast does your CPU execute an instruction?
• 0.33 nanoseconds (say, 3Ghz CPU)

• How far does light travel in 1 CPU cycle?
• 10 cm

• How many instructions does your CPU execute in the time it takes light to travel from
Chicago to NYC and back?

• ~700 miles -> 7.4msec -> 22 million instructions
• Being in NYC would let me execute 22 million instructions in the time it took you to send

your stock order to NYC and get a response!

Latency & Stock Trading

!21

J. Bell GMU CS 475 Spring 2019

• People actually care a LOT about the latency between NYC and Chicago,
because commodities are traded in Chicago and stocks are traded in NYC

• Changes to commodities prices (e.g. ethanol) can dramatically impact
price of some stocks

Reducing Latency with $$$$

!22

J. Bell GMU CS 475 Spring 2019

• It’s not quite as simple as 700 miles -> 7.4msec
• There are streams, mountains, etc… more like 1,000 miles
• Light is refracted in a fiber optic cable is ~31% slower
• What do we do if money is no object?

Reducing Latency with $$$$

!23

J. Bell GMU CS 475 Spring 2019

Reducing Latency with Billions of Dollars

!24https://www.zerohedge.com/news/chicago-new-york-and-back-85-milliseconds

https://www.zerohedge.com/news/chicago-new-york-and-back-85-milliseconds

J. Bell GMU CS 475 Spring 2019

• Approach: use concurrency
• Limited by serial section

Reducing Latency without lots of $$$

!25

Facebook.com

Request Cache
Check

Send
response

Response

Build
friends list

Build
Suggestions

Build
Newsfeed

Serve from
cache

Fast path

Slow path

J. Bell GMU CS 475 Spring 2019

• These examples are at a very high level (components in a large server
system)

• For this lecture, we’ll focus on smaller, more concrete examples
• First: Matrix Multiplication

Exploiting Concurrency

!26

() () ()BAC •=

J. Bell GMU CS 475 Spring 2019

Matrix Multiplication

!27

cij = ∑k=0N-1 aki * bjk

J. Bell GMU CS 475 Spring 2019

Matrix Multiplication

!28

 class Worker extends Thread {

 int row, col;

 Worker(int row, int col) {

 this.row = row; this.col = col;

 }

 public void run() {

 double dotProduct = 0.0;

 for (int i = 0; i < n; i++)

 dotProduct += a[row][i] * b[i][col];

 c[row][col] = dotProduct;

 }}}

J. Bell GMU CS 475 Spring 2019

Matrix Multiplication

!29

 class Worker extends Thread {

 int row, col;

 Worker(int row, int col) {

 this.row = row; this.col = col;

 }

 public void run() {

 double dotProduct = 0.0;

 for (int i = 0; i < n; i++)

 dotProduct += a[row][i] * b[i][col];

 c[row][col] = dotProduct;

 }}}

a thread

J. Bell GMU CS 475 Spring 2019

Matrix Multiplication

!30

 class Worker extends Thread {

 int row, col;

 Worker(int row, int col) {

 this.row = row; this.col = col;

 }

 public void run() {

 double dotProduct = 0.0;

 for (int i = 0; i < n; i++)

 dotProduct += a[row][i] * b[i][col];

 c[row][col] = dotProduct;

 }}}

Which matrix entry to
compute

J. Bell GMU CS 475 Spring 2019

Matrix Multiplication

!31

 class Worker extends Thread {

 int row, col;

 Worker(int row, int col) {

 this.row = row; this.col = col;

 }

 public void run() {

 double dotProduct = 0.0;

 for (int i = 0; i < n; i++)

 dotProduct += a[row][i] * b[i][col];

 c[row][col] = dotProduct;

 }}}

Actual computation

J. Bell GMU CS 475 Spring 2019

Matrix Multiplication

!32

 void multiply() {

 Worker[][] worker = new Worker[n][n];

 for (int row …)

 for (int col …)

 worker[row][col] = new Worker(row,col);

 for (int row …)

 for (int col …)

 worker[row][col].start();

 for (int row …)

 for (int col …)

 worker[row][col].join();

}

J. Bell GMU CS 475 Spring 2019

Matrix Multiplication

!33

 void multiply() {

 Worker[][] worker = new Worker[n][n];

 for (int row …)

 for (int col …)

 worker[row][col] = new Worker(row,col);

 for (int row …)

 for (int col …)

 worker[row][col].start();

 for (int row …)

 for (int col …)

 worker[row][col].join();

} Create nxn

threads

J. Bell GMU CS 475 Spring 2019

Matrix Multiplication

!34

 void multiply() {

 Worker[][] worker = new Worker[n][n];

 for (int row …)

 for (int col …)

 worker[row][col] = new Worker(row,col);

 for (int row …)

 for (int col …)

 worker[row][col].start();

 for (int row …)

 for (int col …)

 worker[row][col].join();

}

Start them

J. Bell GMU CS 475 Spring 2019

Matrix Multiplication

!35

 void multiply() {

 Worker[][] worker = new Worker[n][n];

 for (int row …)

 for (int col …)

 worker[row][col] = new Worker(row,col);

 for (int row …)

 for (int col …)

 worker[row][col].start();

 for (int row …)

 for (int col …)

 worker[row][col].join();

}

Wait for
them to
finish

Start them

J. Bell GMU CS 475 Spring 2019

Matrix Multiplication

!36

 void multiply() {

 Worker[][] worker = new Worker[n][n];

 for (int row …)

 for (int col …)

 worker[row][col] = new Worker(row,col);

 for (int row …)

 for (int col …)

 worker[row][col].start();

 for (int row …)

 for (int col …)

 worker[row][col].join();

}

Wait for
them to
finish

What’s wrong with this picture?

Start them

J. Bell GMU CS 475 Spring 2019

• Threads Require resources
– Memory for stacks
– Setup, teardown

• Scheduler overhead
• Worse for short-lived threads

Thread Overhead

!37

J. Bell GMU CS 475 Spring 2019

• More sensible to keep a pool of long-lived threads
• Threads assigned short-lived tasks

– Runs the task
– Rejoins pool
– Waits for next assignment

Thread Pools

!38

J. Bell GMU CS 475 Spring 2019

• Insulate programmer from platform
– Big machine, big pool
– And vice-versa

• Portable code
– Runs well on any platform
– No need to mix algorithm/platform concerns

Thread Pool = Abstraction

!39

J. Bell GMU CS 475 Spring 2019

• In java.util.concurrent
– Task = Runnable object

• If no result value expected
• Calls run() method.

– Task = Callable<T> object
• If result value of type T expected
• Calls T call() method.
• Interesting question: how do you get the return value from call?

ExecutorService Interface

!40

J. Bell GMU CS 475 Spring 2019

Future<T>

!41

Callable<T> task = …;

…

Future<T> future = executor.submit(task);

…

T value = future.get();

J. Bell GMU CS 475 Spring 2019

Future<T>

!42

Callable<T> task = …;

…

Future<T> future = executor.submit(task);

…

T value = future.get();

Submitting a Callable<T> task
returns a Future<T> object

J. Bell GMU CS 475 Spring 2019

Future<T>

!43

Callable<T> task = …;

…

Future<T> future = executor.submit(task);

…

T value = future.get();

The Future’s get() method blocks
until the value is available

J. Bell GMU CS 475 Spring 2019

Future<?>

!44

Runnable task = …;

…

Future<?> future = executor.submit(task);

…

future.get();

J. Bell GMU CS 475 Spring 2019

Future<?>

!45

Runnable task = …;

…

Future<?> future = executor.submit(task);

…

future.get();

Submitting a Runnable task returns
a Future<?> object

J. Bell GMU CS 475 Spring 2019

Future<?>

!46

Runnable task = …;

…

Future<?> future = executor.submit(task);

…

future.get();

The Future’s get() method blocks until
the computation is complete

J. Bell GMU CS 475 Spring 2019

• Executor Service submissions
– Like Maryland traffic signs
– Are purely advisory in nature

• The executor
– Like the Maryland driver
– Is free to ignore any such advice
– And could execute tasks sequentially …

Note

!47

J. Bell GMU CS 475 Spring 2019

Matrix Addition

!48

00 00 00 00 01 01

10 10 10 10 11 11

C C A B B A
C C A B A B

+ +⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

J. Bell GMU CS 475 Spring 2019

Matrix Addition

!49

00 00 00 00 01 01

10 10 10 10 11 11

C C A B B A
C C A B A B

+ +⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

4 parallel additions

J. Bell GMU CS 475 Spring 2019

Matrix Addition Task

!50

class AddTask implements Runnable {

 Matrix a, b; // multiply this!

 public void run() {

 if (a.dim == 1) {

 c[0][0] = a[0][0] + b[0][0]; // base case

 } else {

 (partition a, b into half-size matrices aij and bij)

 Future<?> f00 = exec.submit(add(a00,b00));

 …

 Future<?> f11 = exec.submit(add(a11,b11));

 f00.get(); …; f11.get();

 …

 }} This is not real Java

code (see book)

J. Bell GMU CS 475 Spring 2019

Matrix Addition Task

!51

class AddTask implements Runnable {

 Matrix a, b; // multiply this!

 public void run() {

 if (a.dim == 1) {

 c[0][0] = a[0][0] + b[0][0]; // base case

 } else {

 (partition a, b into half-size matrices aij and bij)

 Future<?> f00 = exec.submit(add(a00,b00));

 …

 Future<?> f11 = exec.submit(add(a11,b11));

 f00.get(); …; f11.get();

 …

 }}

Base case: add directly

J. Bell GMU CS 475 Spring 2019

Matrix Addition Task

!52

class AddTask implements Runnable {

 Matrix a, b; // multiply this!

 public void run() {

 if (a.dim == 1) {

 c[0][0] = a[0][0] + b[0][0]; // base case

 } else {

 (partition a, b into half-size matrices aij and bij)

 Future<?> f00 = exec.submit(add(a00,b00));

 …

 Future<?> f11 = exec.submit(add(a11,b11));

 f00.get(); …; f11.get();

 …

 }}

Constant-time operation

J. Bell GMU CS 475 Spring 2019

Matrix Addition Task

!53

class AddTask implements Runnable {

 Matrix a, b; // multiply this!

 public void run() {

 if (a.dim == 1) {

 c[0][0] = a[0][0] + b[0][0]; // base case

 } else {

 (partition a, b into half-size matrices aij and bij)

 Future<?> f00 = exec.submit(add(a00,b00));

 …

 Future<?> f11 = exec.submit(add(a11,b11));

 f00.get(); …; f11.get();

 …

 }} Submit 4 tasks

J. Bell GMU CS 475 Spring 2019

Matrix Addition Task

!54

class AddTask implements Runnable {

 Matrix a, b; // multiply this!

 public void run() {

 if (a.dim == 1) {

 c[0][0] = a[0][0] + b[0][0]; // base case

 } else {

 (partition a, b into half-size matrices aij and bij)

 Future<?> f00 = exec.submit(add(a00,b00));

 …

 Future<?> f11 = exec.submit(add(a11,b11));

 f00.get(); …; f11.get();

 …

 }} Let them finish

J. Bell GMU CS 475 Spring 2019

• Matrix example is not typical
• Tasks are independent

– Don’t need results of one task …
– To complete another

• Often tasks are not independent

Dependencies

!55

J. Bell GMU CS 475 Spring 2019

• Note: potential parallelism, but subject to dependencies

Fibonacci

1 if n = 0 or 1
F(n)

F(n-1) + F(n-2) otherwise

!56

J. Bell GMU CS 475 Spring 2019

• This Fibonacci implementation is
– Egregiously inefficient

• So don’t deploy it!
– But illustrates our point

• How to deal with dependencies

Disclaimer

!57

J. Bell GMU CS 475 Spring 2019

Multithreaded Fibonacci

!58

class FibTask implements Callable<Integer> {

 static ExecutorService exec =
Executors.newCachedThreadPool();

 int arg;

 public FibTask(int n) {

 arg = n;

 }

 public Integer call() {

 if (arg > 2) {

 Future<Integer> left = exec.submit(new FibTask(arg-1));

 Future<Integer> right = exec.submit(new FibTask(arg-2));

 return left.get() + right.get();

 } else {

 return 1;

 }}}

J. Bell GMU CS 475 Spring 2019

Multithreaded Fibonacci

!59

class FibTask implements Callable<Integer> {

 static ExecutorService exec =
Executors.newCachedThreadPool();

 int arg;

 public FibTask(int n) {

 arg = n;

 }

 public Integer call() {

 if (arg > 2) {

 Future<Integer> left = exec.submit(new FibTask(arg-1));

 Future<Integer> right = exec.submit(new FibTask(arg-2));

 return left.get() + right.get();

 } else {

 return 1;

 }}}

Parallel calls

J. Bell GMU CS 475 Spring 2019

Multithreaded Fibonacci

!60

class FibTask implements Callable<Integer> {

 static ExecutorService exec =
Executors.newCachedThreadPool();

 int arg;

 public FibTask(int n) {

 arg = n;

 }

 public Integer call() {

 if (arg > 2) {

 Future<Integer> left = exec.submit(new FibTask(arg-1));

 Future<Integer> right = exec.submit(new FibTask(arg-2));

 return left.get() + right.get();

 } else {

 return 1;

 }}}

Pick up & combine results

J. Bell GMU CS 475 Spring 2019

• Multithreaded program is
– A directed acyclic graph (DAG)
– That unfolds dynamically

• Each node is
– A single unit of work

Dynamic Behavior

!61

J. Bell GMU CS 475 Spring 2019

Fib DAG

!62

fib(4)

fib(3) fib(2)

submit get

fib(2)
fib(1) fib(1)

fib(1)

fib(1) fib(1) Note inefficiency in this implementation: fib(2)’s result should
be computed only once

J. Bell GMU CS 475 Spring 2019

Arrows Reflect Dependencies

!63

fib(4)

fib(3) fib(2)

submit get

fib(2)
fib(1) fib(1)

fib(1)

fib(1) fib(1) Note inefficiency in this implementation: fib(2)’s result should
be computed only once

J. Bell GMU CS 475 Spring 2019

• Define work:
– Total time on one processor

• Define critical-path length:
– Longest dependency path
– Can’t beat that!

How Parallel is That?

!64

J. Bell GMU CS 475 Spring 2019

Fib Work

!65

fib(4)

fib(3) fib(2)

fib(2)
fib(1) fib(1)

fib(1)

fib(1) fib(1)

J. Bell GMU CS 475 Spring 2019

Fib Work

!66

work is 17

1 2 3

84 765 9

1410 131211 15

16 17

J. Bell GMU CS 475 Spring 2019

Fib Critical Path

!67

fib(4)

J. Bell GMU CS 475 Spring 2019

Fib Critical Path

!68

fib(4)

Critical path length is 8

1 8

2 7

3 64

5

J. Bell GMU CS 475 Spring 2019

• TP = time on P processors
• T1 = work (time on 1 processor)
• T∞ = critical path length (time on ∞ processors)

Notation Watch

!69

J. Bell GMU CS 475 Spring 2019

• TP ≥ T1/P
– In one step, can’t do more than P work

• TP ≥ T∞
– Can’t beat infinite resources

Simple Bounds

!70

J. Bell GMU CS 475 Spring 2019

• Speedup on P processors
– Ratio T1/TP
– How much faster with P processors

• Linear speedup
– T1/TP = Θ(P)

• Max speedup (average parallelism)
– T1/T∞

More Notation Watch

!71

J. Bell GMU CS 475 Spring 2019

Matrix Addition

!72

00 00 00 00 01 01

10 10 10 10 11 11

C C A B B A
C C A B A B

+ +⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

J. Bell GMU CS 475 Spring 2019

Matrix Addition

!73

00 00 00 00 01 01

10 10 10 10 11 11

C C A B B A
C C A B A B

+ +⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

4 parallel additions

J. Bell GMU CS 475 Spring 2019

• Let AP(n) be running time
– For n x n matrix
– on P processors

• For example
– A1(n) is work
– A∞(n) is critical path length

Addition

!74

J. Bell GMU CS 475 Spring 2019

• Work is

A1(n) = 4 A1(n/2) + Θ(1)

Addition

!75

4 spawned additions

Partition, synch, etc

J. Bell GMU CS 475 Spring 2019

• Work is

A1(n) = 4 A1(n/2) + Θ(1)
 = Θ(n2)

Addition

!76

Same as double-loop summation

J. Bell GMU CS 475 Spring 2019

• Critical Path length is

 A∞(n) = A∞(n/2) + Θ(1)

Addition

!77

spawned additions in
parallel Partition, synch, etc

J. Bell GMU CS 475 Spring 2019

• Critical Path length is

 A∞(n) = A∞(n/2) + Θ(1)
 = Θ(log n)

Addition

!78

J. Bell GMU CS 475 Spring 2019

Matrix Multiplication Redux

!79

() () ()BAC •=

J. Bell GMU CS 475 Spring 2019

Matrix Multiplication Redux

!80

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
•⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2221

1211

2221

1211

2221

1211

BB
BB

AA
AA

CC
CC

J. Bell GMU CS 475 Spring 2019

First Phase …

!81

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++

++
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2222122121221121

2212121121121111

2221

1211

BABABABA
BABABABA

CC
CC

8 multiplications

J. Bell GMU CS 475 Spring 2019

Second Phase …

!82

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++

++
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2222122121221121

2212121121121111

2221

1211

BABABABA
BABABABA

CC
CC

4 additions

J. Bell GMU CS 475 Spring 2019

• Work is

 M1(n) = 8 M1(n/2) + A1(n)

Multiplication

!83

8 parallel
multiplications

Final addition

J. Bell GMU CS 475 Spring 2019

• Work is

 M1(n) = 8 M1(n/2) + Θ(n2)
 = Θ(n3)

Multiplication

!84

Same as serial triple-nested loop

J. Bell GMU CS 475 Spring 2019

• Critical path length is

 M∞(n) = M∞(n/2) + A∞(n)

Multiplication

!85

Half-size parallel
multiplications

Final addition

J. Bell GMU CS 475 Spring 2019

• Critical path length is

 M∞(n) = M∞(n/2) + A∞(n)
 = M∞(n/2) + Θ(log n)
 = Θ(log2 n)

Multiplication

!86

J. Bell GMU CS 475 Spring 2019

• M1(n)/ M∞(n) = Θ(n3/log2 n)
• To multiply two 1000 x 1000 matrices

– 10003/102=107

• Much more than number of processors on any real machine

Parallelism

!87

J. Bell GMU CS 475 Spring 2019

• Parallel applications
– Do not have direct access to HW processors

• Mix of other jobs
– All run together
– Come & go dynamically

• Hence, we have no control over how many processors we get at any given
point

• Instead, shoot for the best parallelism that we can get given however many
processors we actually get

Shared-Memory Multiprocessors

!88

J. Bell GMU CS 475 Spring 2019

Concurrent
Programming Models

!89

J. Bell GMU CS 475 Spring 2019

• AKA event-driven programming
• A paradigm that lends itself well to scaling, especially in a multi-stage

systems (like the example with Facebook)
• Allows us to think about what is done, abstract away how it is done
• We will discuss two asynchronous models: streams, and Promises, neither

of which make you think about threads (or locks?)

Asynchronous Programming

!90

J. Bell GMU CS 475 Spring 2019

• Java 8 introduced the concept of Streams
• A stream is a sequence of objects
• Streams have functions that you can perform on them, which are (mostly)

non-interfering and stateless
• Non-interfering: Does not modify the actual stream
• Stateless: Each time the function is called on the same data, get same result

• Example:
IntStream.range(1, 1000000) //Generate a stream of all ints 1 - 1m
.filter(x -> isPrime(x)) //Retain only values that pass some expensive isPrime function
.forEach(System.out::println); //For each value returned by filter, print it

Streams

!91

J. Bell GMU CS 475 Spring 2019

• I don't know if you have seen this before
IntStream.range(1, 1000000)
.filter(x -> isPrime(x))
.forEach(System.out::println);

• This line is called a lambda expression
• We should have shown it to you before, because it’s a core part of Java syntax since Java 8

was released in 2014
• Effectively, think of this as shorthand for:
IntStream.range(1, 1000000)
.filter(new IntPredicate() {
 @Override
 public boolean test(int x) {
 return isPrime(x);
 }
})
.forEach(System.out::println);

• In fact, javac generates exactly the long-hand code for that shorthand (but that println is cool,
right?)

Sidebar: Lambdas

!92

J. Bell GMU CS 475 Spring 2019

IntStream.range(1, 1000000) //Generate a stream of all ints 1 - 1m
.filter(x -> isPrime(x)) //Retain only values that pass some expensive isPrime function
.forEach(System.out::println); //For each value returned by filter, print it

• Why use the stream interface instead of
for(int i = 1; i < 1000000; i++)
 if(isPrime(x))
 System.out.println(x);

• Who wants to write the parallel version of this?
IntStream.range(1, 1000000) //Generate a stream of all ints 1 - 1m
.filter(x -> isPrime(x)) //Retain only values that pass some expensive isPrime function
.parallel() //Do the filtering in parallel
.forEach(System.out::println); //For each value returned by filter, print it

• The magic works as long as isPrime is stateless!

Streams

!93

J. Bell GMU CS 475 Spring 2019

• Interference
List<String> list = new ArrayList<>(Arrays.asList("Luke", "Leia", "Han"));
list.stream()
.peek(name -> {
 if (name.equals("Han")) {
 list.add("Chewie"); // Adds to list that we are peeking into
 }
})
.forEach(i -> {});

• Stateful
boolean tooBusy = false;
public void isPrime(int x)
{
 if(tooBusy)
 return false;//don't bother running if another thread set tooBusy
 else
 //do a sieve of erasthenes
}

• Side effects
List<Integer> list = new ArrayList<>(
Arrays.asList(1,3,5,7,9,11,13,15,17,19));
List<Integer> result = new ArrayList<>();
list.parallelStream()
.filter(x -> isPrime(x))
.forEach(x -> result.add(x)); //Changing external state, which may not (is not) thread safe

Streams - what can’t be parallelized

!94

J. Bell GMU CS 475 Spring 2019

• Just adding more parallel() doesn't always make it faster! (see: law of leaky
abstractions)

• There is some overhead to how a parallel operation occurs
• Internally, Java keeps a pool of worker threads (rather than make new

threads for each parallel task)
• Streams use a special kind of pool, called a ForkJoinPool

Streams under the hood

!95

J. Bell GMU CS 475 Spring 2019

• Special kind of task - fork() defines how to create subtasks, join() defines how
to combine the results

• Similar to map/reduce, but not distributed
• For streams:

• Fork a task into subtasks for many threads to work on
• Join the results together

Fork/Join Programming

!96

J. Bell GMU CS 475 Spring 2019

• Obligatory array sum example

Fork/Join Programming

!97

class Sum extends RecursiveTask<Long> {
 static final int SEQUENTIAL_THRESHOLD = 5000;

 int low;
 int high;
 int[] array;

 Sum(int[] arr, int lo, int hi) {
 array = arr;
 low = lo;
 high = hi;
 }

 protected Long compute() {
 if(high - low <= SEQUENTIAL_THRESHOLD) {
 long sum = 0;
 for(int i=low; i < high; ++i)
 sum += array[i];
 return sum;
 } else {
 int mid = low + (high - low) / 2;
 Sum left = new Sum(array, low, mid);
 Sum right = new Sum(array, mid, high);
 left.fork();
 long rightAns = right.compute();
 long leftAns = left.join();
 return leftAns + rightAns;
 }
 }

 static long sumArray(int[] array) {
 return ForkJoinPool.commonPool().invoke(new Sum(array,0,array.length));
 }
}

J. Bell GMU CS 475 Spring 2019

• What if we want to run some task, and do stuff while we are waiting for it to be done?
• You COULD do it with a complicated combination of synchronized, wait, and notify
• You can use the Promise abstraction instead

• Called a CompletableFuture in Java 8
CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 return "Result of the asynchronous computation";
});
// Block and get the result of the Future
String result = future.get();
System.out.println(result);

• Just like Future’s from before, but supports chaining

Promises & CompleteableFutures

!98

J. Bell GMU CS 475 Spring 2019

Chaining CompletableFuture

!99

CompletableFuture<String> whatsYourNameFuture = CompletableFuture.supplyAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 return "Jon";
});
// Chain on some more code to run when the future is done
CompletableFuture<String> greetingFuture = whatsYourNameFuture.thenApply(returnValue -> {
 return “Hello, ” + returnValue;
});
System.out.println(greetingFuture.get()); // Hello Jon

J. Bell GMU CS 475 Spring 2019

Chaining CompletableFuture

!100

CompletableFuture<String> whatsYourNameFuture = CompletableFuture.supplyAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 return "Jon";
});
// Chain on some more code to run when the future is done
CompletableFuture<String> greetingFuture = whatsYourNameFuture.thenApply(returnValue -> {
 return “Hello, ” + returnValue;
});
System.out.println(greetingFuture.get()); // Hello Jon

Create an asynchronous task

J. Bell GMU CS 475 Spring 2019

Chaining CompletableFuture

!101

CompletableFuture<String> whatsYourNameFuture = CompletableFuture.supplyAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 return "Jon";
});
// Chain on some more code to run when the future is done
CompletableFuture<String> greetingFuture = whatsYourNameFuture.thenApply(returnValue -> {
 return “Hello, ” + returnValue;
});
System.out.println(greetingFuture.get()); // Hello Jon

Task will return string “Jon”
eventually

J. Bell GMU CS 475 Spring 2019

Chaining CompletableFuture

!102

CompletableFuture<String> whatsYourNameFuture = CompletableFuture.supplyAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 return "Jon";
});
// Chain on some more code to run when the future is done
CompletableFuture<String> greetingFuture = whatsYourNameFuture.thenApply(returnValue -> {
 return “Hello, ” + returnValue;
});
System.out.println(greetingFuture.get()); // Hello Jon

Task will return string “Jon” eventually

J. Bell GMU CS 475 Spring 2019

Chaining CompletableFuture

!103

CompletableFuture<String> whatsYourNameFuture = CompletableFuture.supplyAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 return "Jon";
});
// Chain on some more code to run when the future is done
CompletableFuture<String> greetingFuture = whatsYourNameFuture.thenApply(returnValue -> {
 return “Hello, ” + returnValue;
});
System.out.println(greetingFuture.get()); // Hello Jon

Create ANOTHER future that is
chained to the first

J. Bell GMU CS 475 Spring 2019

Chaining CompletableFuture

!104

CompletableFuture<String> whatsYourNameFuture = CompletableFuture.supplyAsync(() -> {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 throw new IllegalStateException(e);
 }
 return "Jon";
});
// Chain on some more code to run when the future is done
CompletableFuture<String> greetingFuture = whatsYourNameFuture.thenApply(returnValue -> {
 return “Hello, ” + returnValue;
});
System.out.println(greetingFuture.get()); // Hello Jon

Block the main thread for both futures to finish

J. Bell GMU CS 475 Spring 2019

• We can chain asynchronous activities together with the thenAccept term
Chaining CompletableFutures

!105

Promise to get
some data

Promise to make
some changes to

that data

then

then

Report on those
changes to the user

Report on the
error

If there’s an error…

If there’s an error…

Promise to make
some other changes

to that data

then

thenCombine

J. Bell GMU CS 475 Spring 2019

• Any case where you need to have multiple things happen in the background,
but care about the result, and care about them happening in some order

• Asynchronous I/O
• Read data from a web service
• Then process it
• Then save it to a file

CompleteableFuture Use-Cases

!106

J. Bell GMU CS 475 Spring 2019

• Catch errors by providing a callback function for exceptionally (called when
an exception occurs in any of those threads

• API: https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/
CompletableFuture.html

CompletableFutures

!107

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

J. Bell GMU CS 475 Spring 2019

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

This work is licensed under a Creative Commons Attribution-
ShareAlike license

!108

http://creativecommons.org/licenses/by-sa/4.0/

