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Review: Course Grained Locking

!2

honk!

a b d

c

Simple but hotspot + bottleneck 

honk!
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• Instead of using a single lock .. 
• Split object into 

– Independently-synchronized components 
• Methods conflict when they access 

– The same component … 
– At the same time

Review: Fine-Grained Synchronization

!3
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Review: Fine Grained Locking List

!4

a b c
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• Search without locking … 
• If you find it, lock and check … 

– OK: we are done 
– Oops: start over 

• Evaluation 
– Usually cheaper than locking 
– Mistakes are expensive

Review: Optimistic Synchronization

!5
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Review: Optimistic List

!6

b d ea

add(c)
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• Postpone hard work 
• Removing components is tricky 

– Logical removal 
• Mark component to be deleted 

– Physical removal 
• Do what needs to be done

Review: Lazy Synchronization

!7
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Review: Lazy List

!8

a b c

Returns false, because b is marked. No need to 
validate or lock or re-traverse

contains(b)

Intuition: Now can judge if b is in list ONLY by 
looking at b, don’t also need to look at a
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• How do we increase performance with parallelism? 
• How do we split up our program into concurrent sections effectively? 
• Different models for parallel computation 
• Reading: H&S 16.1, 16.2

Today

!9
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• What factors can impact performance? 
• Limits imposed by physics 
• Limits imposed by technology 
• Limits imposed by economics 

• These limits can force us to make tradeoffs 
• Smaller chips are faster, but harder to dissipate heat 
• Need to serve X clients, can only spend Y on CPUs

Designing for Performance

!10
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• Capacity 
• Consistent measure of a service’s size or amount of resources 

• Utilization 
• Percentage of that resource used for a workload 

• Latency 
• How long it takes an input to propagate through a system and 

generate an output 
• Throughput 

• Work done per time

Performance Metrics

!11

} Adjusted by buying 
m

ore resources

}

Adjusted by thinking 
 hard about the problem



J. Bell GMU CS 475 Spring 2019

• In client/server model, latency is simply: time between client sending request 
and receiving response 

• What contributes to latency? 
• Latency sending the message 
• Latency processing the message 
• Latency sending the response 

• Adding pipelined components -> latency is cumulative

Latency

!12

Camera
Image ServiceSends images

Processes images

Phase 1 Phase 210ns
5ns

5ns

10ns Total latency: 30ns
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• Measure of the rate of useful work done for a given workload 
• Example: 

• Throughput is camera frames processed/second 
• When adding multiple pipelined components -> throughput is the minimum 

value

Throughput

!13

Camera
Image ServiceSends images

Processes images

Phase 1 Phase 2
10fps 29fps

1000 fps

1000 fps

Total 
throughput: 

10fps
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• Measure system to find which aspect of performance is lacking (throughput 
or latency) 

• Measure each component to identify bottleneck 
• Identify if fixing that bottleneck will realistically improve system performance 
• Measure improvement 
• Repeat

Designing for Performance

!14
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Improving Throughput

!15

Facebook.com
Request Cache 

Check
Send 

response
ResponseBuild 

friends list
Build 

Suggestions
Build 

Newsfeed
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• Introduce concurrency into our pipeline 
• Each stage runs in its own thread (or many threads, perhaps) 
• If a stage completes its task, it can start processing the next request right 

away 
• E.g. our system will process multiple requests at the same time

Improving Throughput

!16

Facebook.comRequest
Cache 
Check

Send 
response

Response
Build 

friends list
Build 

Suggestions
Build 

Newsfeed
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• Often more challenging than increasing throughput 
• Examples: 

• Physical - Speed of light (network transmissions over long distances) 
• Algorithmic - Looking up an item in a hash table is limited by hash function 
• Economic - Adding more RAM gets expensive

Reducing Latency

!17
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• Buy low/sell high 
• Most of skill is in knowing what a stock will do before your competitors

Latency & Stock Trading

!18
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• Algorithmic trading -> computer programs look at various factors, place 
trades automatically 

• Example: 
• President Trump tweets positively about a company -> price goes up 
• Write a script to check twitter for company mentions, immediately buy/sell 

stock 
• Get in and out before it hits CNN! 
• https://www.npr.org/sections/money/2017/04/07/522897876/meet-botus-

planet-money-s-stock-trading-twitter-bot

Latency & Stock Trading

!19

https://www.npr.org/sections/money/2017/04/07/522897876/meet-botus-planet-money-s-stock-trading-twitter-bot
https://www.npr.org/sections/money/2017/04/07/522897876/meet-botus-planet-money-s-stock-trading-twitter-bot
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• This only works if you can make your trades before other people find out 
• What if you set up this bot in Chicago, and I set one up in NYC? 

• I would beet you to it, every time.

Latency & Stock Trading

!20
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• What is the speed of light? 
• ~300,000 km/sec 

• How fast does your CPU execute an instruction? 
• 0.33 nanoseconds (say, 3Ghz CPU) 

• How far does light travel in 1 CPU cycle? 
• 10 cm 

• How many instructions does your CPU execute in the time it takes light to travel from 
Chicago to NYC and back? 

• ~700 miles -> 7.4msec -> 22 million instructions 
• Being in NYC would let me execute 22 million instructions in the time it took you to send 

your stock order to NYC and get a response!

Latency & Stock Trading

!21
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• People actually care a LOT about the latency between NYC and Chicago, 
because commodities are traded in Chicago and stocks are traded in NYC 

• Changes to commodities prices (e.g. ethanol) can dramatically impact 
price of some stocks

Reducing Latency with $$$$

!22
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• It’s not quite as simple as 700 miles -> 7.4msec 
• There are streams, mountains, etc… more like 1,000 miles 
• Light is refracted in a fiber optic cable is ~31% slower 
• What do we do if money is no object?

Reducing Latency with $$$$

!23
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Reducing Latency with Billions of Dollars

!24https://www.zerohedge.com/news/chicago-new-york-and-back-85-milliseconds

https://www.zerohedge.com/news/chicago-new-york-and-back-85-milliseconds
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• Approach: use concurrency
• Limited by serial section

Reducing Latency without lots of $$$

!25

Facebook.com

Request Cache 
Check

Send 
response

Response

Build 
friends list

Build 
Suggestions

Build 
Newsfeed

Serve from 
cache

Fast path

Slow path
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• These examples are at a very high level (components in a large server 
system) 

• For this lecture, we’ll focus on smaller, more concrete examples 
• First: Matrix Multiplication

Exploiting Concurrency

!26

( ) ( ) ( )BAC •=
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Matrix Multiplication

!27

cij = ∑k=0N-1 aki * bjk
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Matrix Multiplication

!28

  class Worker extends Thread {

    int row, col;

    Worker(int row, int col) {

      this.row = row; this.col = col;

    }

    public void run() {

      double dotProduct = 0.0;

      for (int i = 0; i < n; i++)

        dotProduct += a[row][i] * b[i][col];

      c[row][col] = dotProduct;

    }}}
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Matrix Multiplication

!29

  class Worker extends Thread {

    int row, col;

    Worker(int row, int col) {

      this.row = row; this.col = col;

    }

    public void run() {

      double dotProduct = 0.0;

      for (int i = 0; i < n; i++)

        dotProduct += a[row][i] * b[i][col];

      c[row][col] = dotProduct;

    }}}

a thread
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Matrix Multiplication

!30

  class Worker extends Thread {

    int row, col;

    Worker(int row, int col) {

      this.row = row; this.col = col;

    }

    public void run() {

      double dotProduct = 0.0;

      for (int i = 0; i < n; i++)

        dotProduct += a[row][i] * b[i][col];

      c[row][col] = dotProduct;

    }}}

Which matrix entry to 
compute
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Matrix Multiplication

!31

  class Worker extends Thread {

    int row, col;

    Worker(int row, int col) {

      this.row = row; this.col = col;

    }

    public void run() {

      double dotProduct = 0.0;

      for (int i = 0; i < n; i++)

        dotProduct += a[row][i] * b[i][col];

      c[row][col] = dotProduct;

    }}}

Actual computation
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Matrix Multiplication

!32

  void multiply() {

    Worker[][] worker = new Worker[n][n];

    for (int row …)

      for (int col …)

        worker[row][col] = new Worker(row,col);

    for (int row …)

      for (int col …)

        worker[row][col].start();

    for (int row …)

      for (int col …)

        worker[row][col].join();

}
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Matrix Multiplication

!33

  void multiply() {

    Worker[][] worker = new Worker[n][n];

    for (int row …)

      for (int col …)

        worker[row][col] = new Worker(row,col);

    for (int row …)

      for (int col …)

        worker[row][col].start();

    for (int row …)

      for (int col …)

        worker[row][col].join();

} Create nxn 

threads
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Matrix Multiplication

!34

  void multiply() {

    Worker[][] worker = new Worker[n][n];

    for (int row …)

      for (int col …)

        worker[row][col] = new Worker(row,col);

    for (int row …)

      for (int col …)

        worker[row][col].start();

    for (int row …)

      for (int col …)

        worker[row][col].join();

}

Start them
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Matrix Multiplication

!35

  void multiply() {

    Worker[][] worker = new Worker[n][n];

    for (int row …)

      for (int col …)

        worker[row][col] = new Worker(row,col);

    for (int row …)

      for (int col …)

        worker[row][col].start();

    for (int row …)

      for (int col …)

        worker[row][col].join();

}

Wait for 
them to 
finish

Start them
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Matrix Multiplication

!36

  void multiply() {

    Worker[][] worker = new Worker[n][n];

    for (int row …)

      for (int col …)

        worker[row][col] = new Worker(row,col);

    for (int row …)

      for (int col …)

        worker[row][col].start();

    for (int row …)

      for (int col …)

        worker[row][col].join();

}

Wait for 
them to 
finish

What’s wrong with this picture?

Start them



J. Bell GMU CS 475 Spring 2019

• Threads Require resources 
– Memory for stacks 
– Setup, teardown 

• Scheduler overhead 
• Worse for short-lived threads

Thread Overhead

!37



J. Bell GMU CS 475 Spring 2019

• More sensible to keep a pool of long-lived threads 
• Threads assigned short-lived tasks 

– Runs the task 
– Rejoins pool 
– Waits for next assignment

Thread Pools

!38
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• Insulate programmer from platform 
– Big machine, big pool 
– And vice-versa  

• Portable code 
– Runs well on any platform 
– No need to mix algorithm/platform concerns

Thread Pool = Abstraction

!39
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• In java.util.concurrent 
– Task = Runnable object 

• If no result value expected 
• Calls run() method. 

– Task = Callable<T> object 
• If result value of type T expected 
• Calls T call() method. 
• Interesting question: how do you get the return value from call?

ExecutorService Interface

!40
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Future<T>

!41

Callable<T> task = …; 

…

Future<T> future = executor.submit(task);

…

T value = future.get(); 
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Future<T>

!42

Callable<T> task = …; 

…

Future<T> future = executor.submit(task);

…

T value = future.get(); 

Submitting a Callable<T> task 
returns a Future<T> object 
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Future<T>

!43

Callable<T> task = …; 

…

Future<T> future = executor.submit(task);

…

T value = future.get(); 

The Future’s get() method blocks 
until the value is available
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Future<?>

!44

Runnable task = …; 

…

Future<?> future = executor.submit(task);

…

future.get(); 
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Future<?>

!45

Runnable task = …; 

…

Future<?> future = executor.submit(task);

…

future.get(); 

Submitting a Runnable task returns 
a Future<?> object 
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Future<?>

!46

Runnable task = …; 

…

Future<?> future = executor.submit(task);

…

future.get(); 

The Future’s get() method blocks until 
the computation is complete
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• Executor Service submissions 
– Like Maryland traffic signs 
– Are purely advisory in nature 

• The executor 
– Like the Maryland driver 
– Is free to ignore any such advice 
– And could execute tasks sequentially …

Note

!47
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Matrix Addition

!48

00 00 00 00 01 01

10 10 10 10 11 11

C C A B B A
C C A B A B

+ +⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
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Matrix Addition

!49

00 00 00 00 01 01

10 10 10 10 11 11

C C A B B A
C C A B A B

+ +⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

4 parallel additions
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Matrix Addition Task

!50

class AddTask implements Runnable {

   Matrix a, b; // multiply this!

   public void run() {

     if (a.dim == 1) {

      c[0][0] = a[0][0] + b[0][0]; // base case

     } else {

      (partition a, b into half-size matrices aij and bij)

      Future<?> f00 = exec.submit(add(a00,b00));

      …

      Future<?> f11 = exec.submit(add(a11,b11));

      f00.get(); …; f11.get(); 

      …

     }}  This is not real Java 


code (see book)
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Matrix Addition Task

!51

class AddTask implements Runnable {

   Matrix a, b; // multiply this!

   public void run() {

     if (a.dim == 1) {

      c[0][0] = a[0][0] + b[0][0]; // base case

     } else {

      (partition a, b into half-size matrices aij and bij)

      Future<?> f00 = exec.submit(add(a00,b00));

      …

      Future<?> f11 = exec.submit(add(a11,b11));

      f00.get(); …; f11.get(); 

      …

     }}  

Base case: add directly



J. Bell GMU CS 475 Spring 2019

Matrix Addition Task

!52

class AddTask implements Runnable {

   Matrix a, b; // multiply this!

   public void run() {

     if (a.dim == 1) {

      c[0][0] = a[0][0] + b[0][0]; // base case

     } else {

      (partition a, b into half-size matrices aij and bij)

      Future<?> f00 = exec.submit(add(a00,b00));

      …

      Future<?> f11 = exec.submit(add(a11,b11));

      f00.get(); …; f11.get(); 

      …

     }}  

Constant-time operation
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Matrix Addition Task

!53

class AddTask implements Runnable {

   Matrix a, b; // multiply this!

   public void run() {

     if (a.dim == 1) {

      c[0][0] = a[0][0] + b[0][0]; // base case

     } else {

      (partition a, b into half-size matrices aij and bij)

      Future<?> f00 = exec.submit(add(a00,b00));

      …

      Future<?> f11 = exec.submit(add(a11,b11));

      f00.get(); …; f11.get(); 

      …

     }}  Submit 4 tasks
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Matrix Addition Task

!54

class AddTask implements Runnable {

   Matrix a, b; // multiply this!

   public void run() {

     if (a.dim == 1) {

      c[0][0] = a[0][0] + b[0][0]; // base case

     } else {

      (partition a, b into half-size matrices aij and bij)

      Future<?> f00 = exec.submit(add(a00,b00));

      …

      Future<?> f11 = exec.submit(add(a11,b11));

      f00.get(); …; f11.get(); 

      …

     }}  Let them finish
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• Matrix example is not typical 
• Tasks are independent 

– Don’t need results of one task … 
– To complete another 

• Often tasks are not independent

Dependencies

!55
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• Note: potential parallelism, but subject to dependencies

Fibonacci

1 if n = 0 or 1
F(n)

F(n-1) + F(n-2) otherwise

!56
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• This Fibonacci implementation is 
– Egregiously inefficient 

• So don’t deploy it! 
– But illustrates our point 

• How to deal with dependencies

Disclaimer

!57
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Multithreaded Fibonacci

!58

class FibTask implements Callable<Integer> {

  static ExecutorService exec = 
Executors.newCachedThreadPool();

  int arg;

  public FibTask(int n) {

    arg = n;

  }

  public Integer call() {

    if (arg > 2) {

      Future<Integer> left  = exec.submit(new FibTask(arg-1));

      Future<Integer> right = exec.submit(new FibTask(arg-2));

      return left.get() + right.get();

    } else {

      return 1;

    }}}
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Multithreaded Fibonacci

!59

class FibTask implements Callable<Integer> {

  static ExecutorService exec = 
Executors.newCachedThreadPool();

  int arg;

  public FibTask(int n) {

    arg = n;

  }

  public Integer call() {

    if (arg > 2) {

      Future<Integer> left  = exec.submit(new FibTask(arg-1));

      Future<Integer> right = exec.submit(new FibTask(arg-2));

      return left.get() + right.get();

    } else {

      return 1;

    }}}

Parallel calls
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Multithreaded Fibonacci

!60

class FibTask implements Callable<Integer> {

  static ExecutorService exec = 
Executors.newCachedThreadPool();

  int arg;

  public FibTask(int n) {

    arg = n;

  }

  public Integer call() {

    if (arg > 2) {

      Future<Integer> left  = exec.submit(new FibTask(arg-1));

      Future<Integer> right = exec.submit(new FibTask(arg-2));

      return left.get() + right.get();

    } else {

      return 1;

    }}}

Pick up & combine results
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• Multithreaded program is 
– A directed acyclic graph (DAG) 
– That unfolds dynamically 

• Each node is 
– A single unit of work

Dynamic Behavior

!61
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Fib DAG

!62

fib(4)

fib(3) fib(2)

submit get

fib(2)
fib(1) fib(1)

fib(1)

fib(1) fib(1) Note inefficiency in this implementation: fib(2)’s result should 
be computed only once
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Arrows Reflect Dependencies

!63

fib(4)

fib(3) fib(2)

submit get

fib(2)
fib(1) fib(1)

fib(1)

fib(1) fib(1) Note inefficiency in this implementation: fib(2)’s result should 
be computed only once
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• Define work: 
– Total time on one processor 

• Define critical-path length: 
– Longest dependency path 
– Can’t beat that!

How Parallel is That?

!64
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Fib Work

!65

fib(4)

fib(3) fib(2)

fib(2)
fib(1) fib(1)

fib(1)

fib(1) fib(1)
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Fib Work

!66

work is 17

1 2 3

84 765 9

1410 131211 15

16 17
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Fib Critical Path

!67

fib(4)
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Fib Critical Path

!68

fib(4)

Critical path length is 8

1 8

2 7

3 64

5
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• TP = time on P processors 
• T1 = work (time on 1 processor) 
• T∞ = critical path length (time on ∞ processors)

Notation Watch

!69
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• TP ≥ T1/P 
– In one step, can’t do more than P work 

• TP ≥ T∞ 
– Can’t beat infinite resources

Simple Bounds

!70
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• Speedup on P processors 
– Ratio T1/TP 
– How much faster with P processors 

• Linear speedup 
– T1/TP = Θ(P) 

• Max speedup (average parallelism) 
– T1/T∞

More Notation Watch

!71
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Matrix Addition

!72

00 00 00 00 01 01

10 10 10 10 11 11

C C A B B A
C C A B A B

+ +⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
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Matrix Addition

!73

00 00 00 00 01 01

10 10 10 10 11 11

C C A B B A
C C A B A B

+ +⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

4 parallel additions
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• Let AP(n) be running time  
– For n x n matrix 
– on P processors 

• For example 
– A1(n) is work 
– A∞(n) is critical path length

Addition

!74



J. Bell GMU CS 475 Spring 2019

• Work is 

A1(n) = 4 A1(n/2) + Θ(1)

Addition

!75

4 spawned additions

Partition, synch, etc
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• Work is 

A1(n) = 4 A1(n/2) + Θ(1) 
         = Θ(n2)

Addition

!76

Same as double-loop summation
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• Critical Path length is 

 A∞(n) = A∞(n/2) + Θ(1)

Addition

!77

spawned additions in 
parallel Partition, synch, etc
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• Critical Path length is 

  A∞(n) = A∞(n/2) + Θ(1)  
               = Θ(log n)

Addition

!78
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Matrix Multiplication Redux

!79

( ) ( ) ( )BAC •=



J. Bell GMU CS 475 Spring 2019

Matrix Multiplication Redux

!80

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
•⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2221

1211

2221

1211

2221

1211

BB
BB

AA
AA

CC
CC
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First Phase …

!81

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++

++
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2222122121221121

2212121121121111

2221

1211

BABABABA
BABABABA

CC
CC

8 multiplications
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Second Phase …

!82

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++

++
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2222122121221121

2212121121121111

2221

1211

BABABABA
BABABABA

CC
CC

4 additions
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• Work is 

  M1(n) = 8 M1(n/2) + A1(n)

Multiplication

!83

8 parallel 
multiplications

Final addition
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• Work is 

  M1(n) = 8 M1(n/2) + Θ(n2) 
            = Θ(n3)

Multiplication

!84

Same as serial triple-nested loop
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• Critical path length is 

  M∞(n) = M∞(n/2) + A∞(n) 
   

Multiplication

!85

Half-size parallel 
multiplications

Final addition
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• Critical path length is 

    

        M∞(n) = M∞(n/2) + A∞(n)  
                  = M∞(n/2) + Θ(log n) 
              = Θ(log2 n)

Multiplication

!86
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• M1(n)/ M∞(n) = Θ(n3/log2 n)  
• To multiply two 1000 x 1000 matrices 

– 10003/102=107 

• Much more than number of processors on any real machine

Parallelism
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• Parallel applications 
– Do not have direct access to HW processors 

• Mix of other jobs 
– All run together 
– Come & go dynamically 

• Hence, we have no control over how many processors we get at any given 
point 

• Instead, shoot for the best parallelism that we can get given however many 
processors we actually get

Shared-Memory Multiprocessors
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Concurrent 
Programming Models
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• AKA event-driven programming 
• A paradigm that lends itself well to scaling, especially in a multi-stage 

systems (like the example with Facebook) 
• Allows us to think about what is done, abstract away how it is done 
• We will discuss two asynchronous models: streams, and Promises, neither 

of which make you think about threads (or locks?)

Asynchronous Programming
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• Java 8 introduced the concept of Streams
• A stream is a sequence of objects 
• Streams have functions that you can perform on them, which are (mostly) 

non-interfering and stateless
• Non-interfering: Does not modify the actual stream 
• Stateless: Each time the function is called on the same data, get same result 

• Example: 
IntStream.range(1, 1000000) //Generate a stream of all ints 1 - 1m
.filter(x -> isPrime(x)) //Retain only values that pass some expensive isPrime function
.forEach(System.out::println); //For each value returned by filter, print it

Streams
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• I don't know if you have seen this before 
IntStream.range(1, 1000000) 
.filter(x -> isPrime(x))
.forEach(System.out::println); 

• This line is called a lambda expression 
• We should have shown it to you before, because it’s a core part of Java syntax since Java 8 

was released in 2014 
• Effectively, think of this as shorthand for: 
IntStream.range(1, 1000000)
.filter(new IntPredicate() {
    @Override
    public boolean test(int x) {
        return isPrime(x);
    }
})
.forEach(System.out::println); 

• In fact, javac generates exactly the long-hand code for that shorthand (but that println is cool, 
right?)

Sidebar: Lambdas
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IntStream.range(1, 1000000) //Generate a stream of all ints 1 - 1m
.filter(x -> isPrime(x)) //Retain only values that pass some expensive isPrime function
.forEach(System.out::println); //For each value returned by filter, print it 

• Why use the stream interface instead of  
for(int i = 1; i < 1000000; i++)
    if(isPrime(x))
        System.out.println(x); 

• Who wants to write the parallel version of this? 
IntStream.range(1, 1000000) //Generate a stream of all ints 1 - 1m
.filter(x -> isPrime(x)) //Retain only values that pass some expensive isPrime function
.parallel() //Do the filtering in parallel
.forEach(System.out::println); //For each value returned by filter, print it 

• The magic works as long as isPrime is stateless!

Streams
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• Interference 
List<String> list = new ArrayList<>(Arrays.asList("Luke", "Leia", "Han"));
list.stream()
.peek(name -> {
    if (name.equals("Han")) {
        list.add("Chewie"); // Adds to list that we are peeking into
    }
})
.forEach(i -> {}); 

• Stateful 
boolean tooBusy = false;
public void isPrime(int x)
{
    if(tooBusy)
        return false;//don't bother running if another thread set tooBusy
    else
        //do a sieve of erasthenes
} 

• Side effects 
List<Integer> list = new ArrayList<>(
Arrays.asList(1,3,5,7,9,11,13,15,17,19));
List<Integer> result = new ArrayList<>();
list.parallelStream()
.filter(x -> isPrime(x))
.forEach(x -> result.add(x)); //Changing external state, which may not (is not) thread safe

Streams - what can’t be parallelized
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• Just adding more parallel() doesn't always make it faster! (see: law of leaky 
abstractions) 

• There is some overhead to how a parallel operation occurs 
• Internally, Java keeps a pool of worker threads (rather than make new 

threads for each parallel task) 
• Streams use a special kind of pool, called a ForkJoinPool

Streams under the hood
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• Special kind of task - fork() defines how to create subtasks, join() defines how 
to combine the results 

• Similar to map/reduce, but not distributed 
• For streams: 

• Fork a task into subtasks for many threads to work on 
• Join the results together

Fork/Join Programming
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• Obligatory array sum example

Fork/Join Programming

!97

class Sum extends RecursiveTask<Long> {
    static final int SEQUENTIAL_THRESHOLD = 5000;
    
    int low;
    int high;
    int[] array;
    
    Sum(int[] arr, int lo, int hi) {
        array = arr;
        low   = lo;
        high  = hi;
    }
    
    protected Long compute() {
        if(high - low <= SEQUENTIAL_THRESHOLD) {
            long sum = 0;
            for(int i=low; i < high; ++i)
                sum += array[i];
            return sum;
        } else {
            int mid = low + (high - low) / 2;
            Sum left  = new Sum(array, low, mid);
            Sum right = new Sum(array, mid, high);
            left.fork();
            long rightAns = right.compute();
            long leftAns  = left.join();
            return leftAns + rightAns;
        }
    }
    
    static long sumArray(int[] array) {
        return ForkJoinPool.commonPool().invoke(new Sum(array,0,array.length));
    }
}
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• What if we want to run some task, and do stuff while we are waiting for it to be done? 
• You COULD do it with a complicated combination of synchronized, wait, and notify
• You can use the Promise abstraction instead 

• Called a CompletableFuture in Java 8 
CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
    try {
        TimeUnit.SECONDS.sleep(1);
    } catch (InterruptedException e) {
        throw new IllegalStateException(e);
    }
    return "Result of the asynchronous computation";
});
// Block and get the result of the Future
String result = future.get();
System.out.println(result); 

• Just like Future’s from before, but supports chaining

Promises & CompleteableFutures
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Chaining CompletableFuture

!99

CompletableFuture<String> whatsYourNameFuture = CompletableFuture.supplyAsync(() -> {
    try {
        TimeUnit.SECONDS.sleep(1);
    } catch (InterruptedException e) {
        throw new IllegalStateException(e);
    }
    return "Jon";
});
// Chain on some more code to run when the future is done
CompletableFuture<String> greetingFuture = whatsYourNameFuture.thenApply(returnValue -> { 
    return “Hello, ” + returnValue;
}); 
System.out.println(greetingFuture.get()); // Hello Jon
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Chaining CompletableFuture

!100

CompletableFuture<String> whatsYourNameFuture = CompletableFuture.supplyAsync(() -> {
    try {
        TimeUnit.SECONDS.sleep(1);
    } catch (InterruptedException e) {
        throw new IllegalStateException(e);
    }
    return "Jon";
});
// Chain on some more code to run when the future is done
CompletableFuture<String> greetingFuture = whatsYourNameFuture.thenApply(returnValue -> { 
    return “Hello, ” + returnValue;
}); 
System.out.println(greetingFuture.get()); // Hello Jon

Create an asynchronous task
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Chaining CompletableFuture
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CompletableFuture<String> whatsYourNameFuture = CompletableFuture.supplyAsync(() -> {
    try {
        TimeUnit.SECONDS.sleep(1);
    } catch (InterruptedException e) {
        throw new IllegalStateException(e);
    }
    return "Jon";
});
// Chain on some more code to run when the future is done
CompletableFuture<String> greetingFuture = whatsYourNameFuture.thenApply(returnValue -> { 
    return “Hello, ” + returnValue;
}); 
System.out.println(greetingFuture.get()); // Hello Jon

Task will return string “Jon” 
eventually
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Chaining CompletableFuture

!102

CompletableFuture<String> whatsYourNameFuture = CompletableFuture.supplyAsync(() -> {
    try {
        TimeUnit.SECONDS.sleep(1);
    } catch (InterruptedException e) {
        throw new IllegalStateException(e);
    }
    return "Jon";
});
// Chain on some more code to run when the future is done
CompletableFuture<String> greetingFuture = whatsYourNameFuture.thenApply(returnValue -> { 
    return “Hello, ” + returnValue;
}); 
System.out.println(greetingFuture.get()); // Hello Jon

Task will return string “Jon” eventually
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Chaining CompletableFuture
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CompletableFuture<String> whatsYourNameFuture = CompletableFuture.supplyAsync(() -> {
    try {
        TimeUnit.SECONDS.sleep(1);
    } catch (InterruptedException e) {
        throw new IllegalStateException(e);
    }
    return "Jon";
});
// Chain on some more code to run when the future is done
CompletableFuture<String> greetingFuture = whatsYourNameFuture.thenApply(returnValue -> { 
    return “Hello, ” + returnValue;
}); 
System.out.println(greetingFuture.get()); // Hello Jon

Create ANOTHER future that is 
chained to the first
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Chaining CompletableFuture
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CompletableFuture<String> whatsYourNameFuture = CompletableFuture.supplyAsync(() -> {
    try {
        TimeUnit.SECONDS.sleep(1);
    } catch (InterruptedException e) {
        throw new IllegalStateException(e);
    }
    return "Jon";
});
// Chain on some more code to run when the future is done
CompletableFuture<String> greetingFuture = whatsYourNameFuture.thenApply(returnValue -> { 
    return “Hello, ” + returnValue;
}); 
System.out.println(greetingFuture.get()); // Hello Jon

Block the main thread for both futures to finish
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• We can chain asynchronous activities together with the thenAccept term
Chaining CompletableFutures
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Promise to get 
some data

Promise to make 
some changes to 

that data

then

then

Report on those 
changes to the user

Report on the 
error

If there’s an error…

If there’s an error…

Promise to make 
some other changes 

to that data

then

thenCombine
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• Any case where you need to have multiple things happen in the background, 
but care about the result, and care about them happening in some order 

• Asynchronous I/O 
• Read data from a web service 
• Then process it 
• Then save it to a file

CompleteableFuture Use-Cases
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• Catch errors by providing a callback function for exceptionally (called when 
an exception occurs in any of those threads 

• API: https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/
CompletableFuture.html

CompletableFutures
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https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
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• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International 
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/  

• You are free to: 
• Share — copy and redistribute the material in any medium or format 
• Adapt — remix, transform, and build upon the material 
• for any purpose, even commercially. 

• Under the following terms: 
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if 

changes were made. You may do so in any reasonable manner, but not in any way that 
suggests the licensor endorses you or your use.  

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your 
contributions under the same license as the original.  

• No additional restrictions — You may not apply legal terms or technological measures that 
legally restrict others from doing anything the license permits.

This work is licensed under a Creative Commons Attribution-
ShareAlike license
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