
Web Services Wrap-up, Transactions

CS 475, Spring 2019

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2019

• Two methods/threads/processes running on the same computer generally
have shared fate

• They will either both crash, or neither will crash

Review: Shared Fate

!2

J. Bell GMU CS 475 Spring 2019

• When two machines in a distributed system can’t talk to each other, they
might start believing different things

• Two sides can not reconcile view of world because they can’t talk to each
other

• We call this a split brain problem

Review: Split Brain

!3

J. Bell GMU CS 475 Spring 2019

• Procedure calls
• Simple way to pass control and data
• Elegant transparent way to distribute application
• Not only way…

• Hard to provide true transparency
• Failures
• Performance
• Memory access
• Etc.

• How to deal with hard problem: give up and let programmer deal with it

Review: RPC Summary

!4

J. Bell GMU CS 475 Spring 2019

• RPC on the web
• Transactions - NOT yet getting to distributed transactions
• Note - YouTube lecture on Monday, Prof Bell at meeting off-campus
• Reminders:

• HW3 posted

Today

!5

J. Bell GMU CS 475 Spring 2019

• How do we do RPC on the web?
• Challenges for scaling up (more clients) and out (heterogeneous clients)

• Need to get beyond RMI (it’s Java only)
• How do we find API endpoints?
• How do we format requests?
• How do we encode data?

RPC on the Web

!6

J. Bell GMU CS 475 Spring 2019

• At a high level: any application that invokes computation via the Web
• Several standards:

• XML/RPC
• SOAP
• REST

• All are implemented over HTTP as a communication protocol

Web Services

!7

Link layer

Network layer
TCP

XML/RPC or SOAP or REST

HTTP

J. Bell GMU CS 475 Spring 2019

• A specification for generic RPC, using XML as an interchange format
<?xml version="1.0"?> <methodCall>
 <methodName>SumAndDifference</methodName> <params>
 <param><value><i4>40</i4></value></param>
 <param><value><i4>10</i4></value></param> </params>
</methodCall>

• Recall - XML is a markup language — tags and parameters
• Protocols (like in this case, XML/RPC) define what tags mean (e.g.

methodCall)

XML/RPC

!8

J. Bell GMU CS 475 Spring 2019

• Very simple specification
• http://xmlrpc.scripting.com/spec.html (it’s ~ 2 pages)

• Does not have a standard way to specify interfaces or generate stubs
• Compare to: RMI @Remote interfaces

• No standard for extending protocol, adding authentication, sessions, etc

XML/RPC

!9

http://xmlrpc.scripting.com/spec.html

J. Bell GMU CS 475 Spring 2019

• Written in XML
• Extension to XML-RPC
• Defines mechanism to pass commands and parameters for RPC (like XML-

RPC)
• Also defines standard for describing the services and interfaces (WSDL, or

Web Service Definition Language)
• WSDL can be used to automatically generate stubs for client/server

SOAP

!10

J. Bell GMU CS 475 Spring 2019

• Written in XML
• Defines a web services:

• Operations offered by the service (what)
• Mechanisms to access the service (how)
• Location of the service (where)

<definitions name="MyService">
 <types>data types used</types>
 <message>parameters used</message>
 <portType>set of operations performed</portType>
 <binding>communication protocols and data formats used</binding>
 <service>set of ports to service provider endpoints</service>
</definitions>

WSDL

!11

J. Bell GMU CS 475 Spring 2019

• SOAP protocol defines how RPC are sent over a network
• WSDL defines how a given service uses SOAP

• SOAP packs messages into an envelope with a header and body
• Envelope abstraction allows SOAP extensions to do more stuff

(authentication, etc)

SOAP

!12

env:envelope (env means this is part of the SOAP description)

env:body

m:exchange (m means this is part of the service)

m:arg 1
Hello

m:arg 2
World

env:header

relmsg:sequence (relmsg means part of a reliable message component)

relmsg:messagid
143

J. Bell GMU CS 475 Spring 2019

SOAP

!13

J. Bell GMU CS 475 Spring 2019

• SOAP has LOTS of extensions (60+)
• Reliable messaging
• Security
• Addressing
• Transactions

• SOAP supports a lot of complexity in the protocol itself
• Problem: just to get a minimal, small example working, you need to do a lot of

boilerplate

SOAP

!14

J. Bell GMU CS 475 Spring 2019

• Defined by Roy Fielding in his 2000 Ph.D. dissertation
• “Throughout the HTTP standardization process, I was called on to defend the

design choices of the Web. That is an extremely difficult thing to do... I had
comments from well over 500 developers, many of whom were distinguished
engineers with decades of experience. That process honed my model down
to a core set of principles, properties, and constraints that are now called
REST.”

• Interfaces that follow REST principles are called RESTful

REST: REpresentational State Transfer

!15

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

J. Bell GMU CS 475 Spring 2019

• Client server: separation of concerns (reuse)
• Stateless: each client request contains all information necessary to service

request (scaling)
• Cacheable: clients and intermediaries may cache responses. (scaling)
• Layered system: client cannot determine if it is connected to end server or

intermediary along the way. (scaling)
• Uniform interface for resources: a single uniform interface (URIs) simplifies

and decouples architecture (change & reuse)

Principles of REST

!16

J. Bell GMU CS 475 Spring 2019

• URIs represent a contract about what resources your server exposes and what can
be done with them

• Leave out anything that might change
• Content author names, status of content, other keys that might change
• File name extensions: response describes content type through MIME header not

extension (e.g., .jpg, .mp3, .pdf)
• Server technology: should not reference technology (e.g., .cfm, .jsp)

• Endeavor to make all changes backwards compatible
• Add new resources and actions rather than remove old

• If you must change URI structure, support old URI structure and new URI structure

REST - URI Design

!17

J. Bell GMU CS 475 Spring 2019

• The candy web service!
• Tracks information about candy
• http://api.jonbell.net/candy/twix

• GET this URI to find out about twix bar
• POST to the URI to set up a new twix bar
• DELETE this URI to eat a twix

Example URI Design

!18

http://api.jonbell.net/candy/twix

J. Bell GMU CS 475 Spring 2019

Transactions

!19

J. Bell GMU CS 475 Spring 2019

boolean transferMoney(Person from, Person to, float
amount){
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 to.balance = to.balance + amount;
 return true;
 }
 return false;
}

Transactions

!20

What can go wrong here?

J. Bell GMU CS 475 Spring 2019

boolean transferMoney(Person from, Person to, float amount){
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 to.balance = to.balance + amount;
 return true;
 }
 return false;
}

Transactions: Classic Example

!21

What’s wrong here?
Need isolation (prevent overdrawing)

transferMoney(P1, P2, 100) transferMoney(P1, P2, 200)
P1.balance (200) >= 100 P2.balance (200) > 200
P1.balance = 200 - 100 = 0
P2.balance = 200 + 100 = 300
return true; P1.balance = 100 - 200 = -100

P2.balance = 300 + 200 = 500
return true;

J. Bell GMU CS 475 Spring 2019

boolean transferMoney(Person from, Person to, float amount){
 synchronized(from){
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 to.balance = to.balance + amount;
 return true;
 }
 return false;
 }
}

Transactions: Classic Example

!22

Adding a lock: prevents accounts from being overdrawn

transferMoney(P1, P2, 100) transferMoney(P1, P2, 200)
P1.balance (200) >= 100
P1.balance = 200 - 100 = 0
P2.balance = 200 + 100 = 300
return true;

P1.balance <= 200
return false;

But: shouldn’t we lock on to also?

J. Bell GMU CS 475 Spring 2019

boolean transferMoney(Person from, Person to, float amount){
 synchronized(from, to){
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 to.balance = to.balance + amount;
 return true;
 }
 return false;
 }
}

Transactions: Classic Example

!23

Locking on both from, to at same time

transferMoney(P1, P2, 100) transferMoney(P1, P2, 200)
P1.balance (200) >= 100
P1.balance = 200 - 100 = 0
P2.balance = 200 + 100 = 300
return true;

P1.balance <= 200
return false;

J. Bell GMU CS 475 Spring 2019

boolean transferMoney(Person from, Person to, float amount){
 synchronized(from, to){
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 to.balance = to.balance + amount;
 return true;
 }
 return false;
 }
}

Transactions: Classic Example

!24

transferMoney(P1, P2, 100) transferMoney(P1, P2, 200)
P1.balance (200) >= 100
P1.balance = 200 - 100 = 0

P1.balance <= 200
return false;

Problem: P1.balance was deducted P2.balance not
incremented! (“Atomicity violation”)

J. Bell GMU CS 475 Spring 2019

• How can we provide some consistency guarantees across operations
• Transaction: unit of work (grouping) of operations

• Begin transaction
• Do stuff
• Commit OR abort

• Why distributed transactions?
• Data might be huge, spread across multiple machines
• Scale performance up
• Replicate data to tolerate failures

Transactions

!25

J. Bell GMU CS 475 Spring 2019

• Traditional properties: ACID
• Atomicity: transactions are “all or nothing”
• Consistency: Guarantee some basic properties of data; each transaction

leaves the database in a valid state
• Isolation: Each transaction runs as if it is the only one; there is some valid

serial ordering that represents what happens when transactions run
concurrently

• Durability: Once committed, updates cannot be lost despite failures

Properties of Transactions

!26

J. Bell GMU CS 475 Spring 2019

Concurrency control:
Consistency & Isolation

!27

J. Bell GMU CS 475 Spring 2019

• Simple solution for isolation
• Phase 1: acquire locks (all that you might need)
• Phase 2: release locks

• You can’t get any more locks after you release any
• Typically: locks released when you say “commit” or “abort”

2-phase locking

!28

J. Bell GMU CS 475 Spring 2019

NOT 2-phase locking

!29

boolean transferMoney(Person from, Person to, float amount){
 from.lock();
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 from.unlock();
 to.lock();
 to.balance = to.balance + amount;
 to.unlock();
 return true;
 }
 else
 from.unlock();
 return false;
}

Invalid: other
transactions could read
an inconsistent system

state at this point!

J. Bell GMU CS 475 Spring 2019

2-phase locking

!30

boolean transferMoney(Person from, Person to, float amount){
 from.lock();
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 to.lock();
 to.balance = to.balance + amount;
 to.unlock();
 from.unlock();
 return true;
 }
 else
 from.unlock();
 return false;
}

Might deadlock if one
transaction gives from
P1->P2, other P2->P1

J. Bell GMU CS 475 Spring 2019

• Ideal isolation semantics
• Slightly stronger than sequential consistency
• Definition: execution of a set of transactions is equivalent to some serial order

• Two executions are equivalent if they have the same effect on program state
and produce the same output

• Just like sequential consistency, but the outcome must be equivalent to an
ordering where nothing happens concurrently, no re-ordering of events
between multiple transactions.

Serializability

!31

J. Bell GMU CS 475 Spring 2019

• Allows serializability to be considered at the level of transactions, which might
include multiple variables

• If a transaction T accesses variables A and B, and T’ accesses variables A
and B, then either:

2-Phase Locking Ensures Serializability of Transactions

!32

T

Access A Access B

T’

Access A Access B

J. Bell GMU CS 475 Spring 2019

• Allows serializability to be considered at the level of transactions, which might
include multiple variables

• If a transaction T accesses variables A and B, and T’ accesses variables A
and B, then either:

2-Phase Locking Ensures Serializability of Transactions

!33

T

Access A Access B

T’

Access A Access B

J. Bell GMU CS 475 Spring 2019

• Allows serializability to be considered at the level of transactions, which might
include multiple variables

• If a transaction T accesses variables A and B, and T’ accesses variables A
and B, then either:

2-Phase Locking Ensures Serializability of Transactions

!34

T

Access A

Access B

T’

Access A

Access B

Individual variable acesses are sequentially consistent, but transactions are not
serializable!

J. Bell GMU CS 475 Spring 2019

• Proof by contradiction
• Is it possible for T -> T’ and T’ -> … -> T? (different order for A and B)
• What would have happened?

• 1. T releases lock of A
• 2. T’ acquires lock of A
• 3. T’ releases lock of B
• 4. T acquires lock of B

• Hence, 1->2, 3->4
• But, required by 2PL: 4->1, 2->3 (or vv)
• Putting this together would be: 4->1->2, 2->3->4 aka a contradiction

Proof of Serializability - 2PL

!35

J. Bell GMU CS 475 Spring 2019

Concurrency Weirdness

!36

Transaction 1: Update employees, set salary = salary*1.1 Transaction 2: Hire Carol, Hire Mike

Employee Salary
Bob 100

Herbert 100

Larry 100

Jon 100

J. Bell GMU CS 475 Spring 2019

Concurrency Weirdness

!37

Transaction 1: Update employees, set salary = salary*1.1

Transaction 2: Hire Carol, Hire Mike

Employee Salary
Bob 100

Herbert 100

Larry 100

Jon 100

Can run concurrently: no overlapping locks!

J. Bell GMU CS 475 Spring 2019

Concurrency Weirdness

!38

Transaction 1: Update employees, set salary = salary*1.1

Transaction 2: Hire Carol, Hire Mike

Employee Salary
Bob 100

Herbert 100
Larry 100
Jon 100

Carol 100

Can run concurrently: no overlapping locks!

J. Bell GMU CS 475 Spring 2019

Concurrency Weirdness

!39

Transaction 1: Update employees, set salary = salary*1.1

Transaction 2: Hire Carol, Hire Mike

Employee Salary
Bob 110

Herbert 110
Larry 110
Jon 110

Carol 110

Can run concurrently: no overlapping locks!

J. Bell GMU CS 475 Spring 2019

Concurrency Weirdness

!40

Transaction 1: Update employees, set salary = salary*1.1

Transaction 2: Hire Carol, Hire Mike

Employee Salary
Bob 110

Herbert 110
Larry 110
Jon 110

Carol 110
Mike 100

Solution to prevent this: Transaction 1 must always
acquire some lock to prevent any other transaction

from touching the data!
Or: ignore this problem and accept the consequences

J. Bell GMU CS 475 Spring 2019

No half measures: How do we ensure
the entire transaction happens, or

none? (Atomicity, Durability)

!41

If the machine crashes? can’t commit?

J. Bell GMU CS 475 Spring 2019

• How do we recover transaction state if we crash?
• Goal:

• Committed transactions are not lost
• Non-committed transactions either continue where they were or aborted

• Plan:
• Consider local recovery
• Then distributed issues

Fault Recovery

!42

J. Bell GMU CS 475 Spring 2019

• Maintain a complete log of all operations INDEPENDENT of the actual data
they apply to

• E.g. Transaction boundaries and updates
• Transaction operations considered provisional until commit is logged to disk

• Log is authoritative

Write-ahead logging

!43

J. Bell GMU CS 475 Spring 2019

• Maintain this big log, with…
• Log Sequence Numbers (LSN) to track entries
• Each record contains an LSN, plus the LSN of the previous transaction
• Transaction ID
• Operation type

Write ahead logging: Begin/commit/abort

!44

J. Bell GMU CS 475 Spring 2019

• Track all information needed to reproduce transaction
• prevLSN, transactionID, operationType (like begin/commit/abort)
• Update itself:

• Update location
• Old value
• New value

Write ahead logging: update records

!45

J. Bell GMU CS 475 Spring 2019

• Let’s assume we can always read the log
• Analyze the log
• Redo all transactions starting from beginning
• Undo uncommitted transactions

• We replay all of the transactions for consistency
• Generalize all operations - don’t need to store the results of operations, just

the operations

Recovering From Failure

!46

J. Bell GMU CS 475 Spring 2019

• If you have a checkpoint, you can guarantee that all things before that
checkpoint have been flushed to disk

• Hence, no need to replay log after then
• Speeds up recovery
• Reduces log size
• Can always build one checkpoint off an old one
• Why not always checkpoint?

Write Ahead Logging + Checkpoints

!47

J. Bell GMU CS 475 Spring 2019

• System model: data stored in multiple locations, multiple servers participating
in a single transaction. One server pre-designated “coordinator”

• Failure model: messages can be delayed or lost, servers might crash, but
have persistent storage to recover from

Distributing Transactions

!48

J. Bell GMU CS 475 Spring 2019

• Coordinator: Begins a transaction
• Assigns a unique transaction ID
• Responsible for commit + abort
• In principle, any client can be the coordinator, but all participants need to

agree on who is the coordinator
• Participants: everyone else who has the data used in the transaction

Distributed Transactions

!49

J. Bell GMU CS 475 Spring 2019

• Naive protocol: coordinator broadcasts out “commit!” continuously until
participants all say “OK!”

• Problem: what happens when a participants fails during commit? How do the
other participants know that they shouldn’t have really committed and they
need to abort?

Naive Distributed Transactions

!50

J. Bell GMU CS 475 Spring 2019

Naive Distributed Transactions

!51

Commit!

OK! OK! Nope!

We couldn’t successfully commit on all 3 machines. But 1-phase commit has no way
to go back!

J. Bell GMU CS 475 Spring 2019

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

This work is licensed under a Creative Commons Attribution-
ShareAlike license

!52

http://creativecommons.org/licenses/by-sa/4.0/

