Distributed Transactions: 3 Phase
Commit and Beyond

CS 475, Spring 2019
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Agreement Generally

 Most distributed systems problems can be reduced to this one:

o Despite being separate nodes (with potentially ditferent views of their data
and the world)...

* All nodes that store the same object O must apply all updates to that object
IN the same order (consistency)

* All nodes involved in a transaction must either commit or abort their part of
the transaction (atomicity)

e Easy?
e ... but nodes can restart, die or be arbitrarily slow
e ... and networks can be slow or unreliable too

J. Bell GMU CS 475 Spring 2019



Properties of Agreement

o 2 kinds of properties, just like for mutual exclusion:
e Safety (correctness)

* All nodes agree on the same value (which was proposed by some node)
e Liveness (fault tolerance, availability)

e |flessthan N nodes crash, the rest should still be OK
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2-Phase Commit

o Separate the commit into two steps:
e 1:Voting

e Each participant prepares to commit and votes of whether or not it can
commit

o 2: Committing
* Once voting succeeds, every participant commits or aborts
 Assume that participants and coordinator communicate over RPC
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2PC Event Sequence

Coordinator Participant
Transaction state: Local state:
prepared ——=anyoucommity - opared
Yes
uncertain

committed w

committed
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Fault Recovery Example

Coordinator Participant Participant
(client or 3rd party) Goliath National Duke & Duke
transaction
.commit()

“Yes”

“Yes”

Crash :(

Example: Participant crashes after voting “yes” to commit
—— y T —

Solution: Participants must keep track of transaction status on persistent storage for recovery on reboot
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Fault Recovery Example

Coordinator Participant Participant
(client or 3rd party) Goliath National Duke & Duke
transaction
.commit()

“Yes”

“YeS”,—A——

l?_ Crash :(
Example: Coordinator crashes after receiving votes
— v ——

Solution: Coordinator must keep track of transaction status on persistent storage for recovery on reboot
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Fault Recovery Example

Example: Participant times out while waiting to hear the outcome

Problem: Can the participant unilaterally determine the outcome?

Coordinator Participant Participant
(client or 3rd party) Goliath National Duke & Duke

transaction.c
ommit()

Participant 1: Participant 2: Mutually Agreed

W, GNB D&D Outcome
Prepan
“Yes” y%\’ Votes Yes Votes No Abort

“Yes” I

_ o—tcome Votes No Votes No Abort
CMW

Votes Yes Votes Yes Commit

Votes No \Votes Yes Abort

Solution: As long as we vote “no” outcome
Is always abort! If we voted “yes”... no idea!
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2PC Timeouts

 \We can solve a lot (but not all of the cases) by having the participants talk to
each other

o But, If coordinator tails, there are cases where everyone stalls until it recovers
e (Can the coordinator fail?... yes

o We'll come back to this "discuss amongst yourselves” kind of transactions
today!
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Today

 More discussion of fault tolerance, in the context of transactions
 Agreement and transactions in distributed systems - 3PC
e Reminders:

e HW3 due Thursday!

o Study opportunity - help improve software engineering, get $40 - https://
cs.gmu.edu/~tlatoza/studies/AuthoringDesignRules.pdf
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Digging Deeper into 2PC Failures

 Fundamental problem:
* Once coordinator says commit we can not go back
* That's the property of transactions though!
* [n what situations can we reach consensus if the coordinator fails”?

o |et’'s go through some examples again, this time using Socrative to poll your
answers

Go to socrative.com and select “Student Login® Room: CS475; ID is your G-Number
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Digging Deeper into 2PC Failures

If they can talk to each other, we know we can commit (good)

Coor

nator

Participant A

Participant B

Participant C

Participant D
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Voted yes
Heard back “commit”

Voted yes
Did not hear result

Voted yes
Did not hear result

Voted yes
Did not hear result
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Digging Deeper into 2PC Failures

Coor

nator

If they can talk to each other, we know that we can all abort (good)

Participant A

Participant B

Participant C

Participant D
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Voted no
Did not hear result

Voted yes
Did not hear result

Voted yes
Did not hear result

Voted yes
Did not hear result
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Digging Deeper into 2PC Failures

If they can talk to each other, we do not know if we can commit/abort (who knows
what the coordinator will do?)

o Voted yes
Part t A

2l Did not hear result
Voted yes

Participant B ]
S Did not hear result

Coor nator

Voted yes

EELESEMR i ot hear result

Voted yes
Did not hear result

Participant D
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Digging Deeper into 2PC Failures

If they can talk to each other, we do not know if we can commit/abort (who knows
that there was a vote no?)

Partic ant A voted no

Did not hear result

Voted yes

Participant B .
K Did not hear result

Coor nator

Voted yes

EELESEMR i ot hear result

Voted yes
Did not hear result

Participant D
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Digging Deeper into 2PC Failures

If they can talk to each other, we do not know if we can commit/abort (do not
know what the coordinator heard/said)

. Voted yes

Part t A

o Rk Heard back “commit”
Voted yes

Participant B .
K Did not hear result

Coor nator

Voted yes

EELESEMR i ot hear result

Voted yes
Did not hear result

Participant D
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3 Phase Commit

o Goal: Eliminate this class of failure from blocking liveness

Voted yes

Voted yes

Participant B .
P Did not hear result

Coor nator

- Voted yes
sl Did not hear result
Voted yes

Participant D .
s Did not hear result

GMU CS 475 Spring 2019

Heard back “commit”
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3 Phase Commit

* (Goal: Avoid blocking on node failure
¢ How?
* Think about how 2PC is better than 1PC

 1PC means you can never change your mind or have a failure after
committing

o 2PC still means that you can't have a failure after committing (committing
S Irreversible)

J. Bell GMU CS 475 Spring 2019
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3 Phase Commit

e 3PC idea:
e Split commit/abort into 2 sub-phases
 1: Tell everyone the outcome
e 2: Agree on outcome

 Now: EVERY participant knows what the result will be betore they
irrevocaply commit!

J. Bell GMU CS 475 Spring 2019
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Coordinator Participants (A,B,C,D)

Soliciting
vVotes
Timeout causes

abort

Commit
authorized
(if all yes)
Timeout causes
abort

Done

3PC Example

%
. Status: Uncertain
W Timeout causes abort

Status: Prepared to commit

% Timeout causes commit
%
Status: Committed

GMU CS 475 Spring 2019
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Soliciting
votes

Timeout causes
abort

Commit
authorized
(if all yes)

Timeout causes
abort

Done

3PC Exercise

Coordinator Participants (A,B,C,D)

%
. Status: Uncertain
W Timeout causes abort

Status: Prepared to commit

% Timeout causes commit
e
Status: Committed

GMU CS 475 Spring 2019

Scenario:
1 Coordinator, 4 participants
No failures, all commit

e — N
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 Can B/C/D reach a safe decision...
* [f any one of them has received preCommit?

e YES! Assume A is dead. When A comes back online,
it will recover, and talk to B/C/D to catch up.

e Consider equivalent to in 2PC where B/C/D received
the "commit” message and all voted yes

J. Bell GMU CS 475 Spring 2019

3PC Crash Handling

Coor nator

Participant B

Participant C

Participant D
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3PC Crash Handling

e Can B/C/D reach a safe decision...
e |[f NONE of them has received preCommit”

Coor nator

e YES! It is safe to abort, because A can not have
committed (because it couldn’t commit until B/C/D
receive and acknowledge the pre-commit)

* This is the big strength of the extra phase over 2PC

. Participant B
« Summary: Any node can crash at any time, and we can =

always safely abort or commit.
Participant C

Participant D

J. Bell GMU CS 475 Spring 2019
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3PC Exermse

Coordinator Participants (A

Soliciting W
voles . Status: Uncertain
Timeout causes W Timeout causes abort

abort

Commit %
authorized Status: Prepared to commit
. % Timeout causes commit
(if all yes)
Timeout causw -
Status: Committed
abort %

Done -
v Scenario:
1 Coordinator, 4 participants
After pre-commit sent, coordinator and A fall

]. Bell GMU CS 475 Spring 2019
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3PC Exermse

Coordinator Participants (A

Soliciting %
votes Status: Uncertain
Timeout causes W Timeout causes abort

abort

Commit %
authorized Status: Prepared to commit

. % Timeout causes commit

(if all yes)
Timeout causw -

Status: Committeo
abort %
Exercise round 2:

Done . .
' ' 1 Coordinator, 4 participants
Coordinator sends pre-commit
message then fails

J. Bell GMU CS 475 Sp____
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Properties of Agreement

» Safety (correctness)

* All nodes agree on the same value (which was proposed by some node)
* Liveness (fault tolerance, availability)

e |fless than N nodes crash, the rest should still be OK

J. Bell GMU CS 475 Spring 2019
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Does 3PC guarantee agreement?

« Reminder, that means:
e Liveness (availability)
* Yes! Always terminates based on timeouts
e Safety (correctness)
e Yes!”
*Assuming that the only way things fail is by crashing

J. Bell GMU CS 475 Spring 2019
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Safety in Crashes

Timeout behavior:  WERNGE o oitiiiA\tioszed
abort!

Prepared to commit

Yes e e s
Partic antB Particr nt D

Jaeynidied  UALersd Uneertam UABSHSR

Crashed: do not commit or abort. When recovers,
asks coordinator what to do
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Partitions

Implication: if networks can delay arbitrarily, SPC does not guarantee safety!!!!

Timeout behavior: abort

Coordinator INYel penulyfe Vi) (lsp4sTe

__Prepared to commit Network Partltlon 1n

~ .
< D " s . - o9 - -
4 ,’ det .”' 'A. : ~ =L =35 - &
. o ~ . & y N
- ,’ﬁ_.~ o - - . --- —‘ . . < < > 5 . .~ -~ -

+ I
. - _l.
o - - 1
oo e
4

Part|0|pant A

Yes Yes

UA@@N@@\ Uneertam UASOISH

L ;‘-.Tlmeout behawor. Timeout behavior: abort
Commit!

Qﬁfﬁﬁ@ﬁﬁd
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3PC Exermse

Coordinator Participants (A,B,C,

Soliciting %
votes . Status: Uncertain
Timeout causes W Timeout causes abort

abort

Commit %
authorized Status: Prepared to commit
. % Timeout causes commit
(if all yes)
Timeout causw .
Status: Committed
abort %

Done Scenario:
' ' 1 Coordinator, 4 participants
Coordinator sends pre-commit message ONLY to A,
then Coordinator fails, A partitioned
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Modeling our Systems

To help design our algorithms and systems, we tend to leverage
abstractions and models to make assumptions

Generally: Stronger assumptions -> worse performance
Weaker assumptions -> more complicated

Strength

A

Synchronous

Asynchronous

System model

>

Byzantine (we'll come back to
this, but blockchains are here)

Partitions

Crash-fail

Failure Model

GMU CS 475 Spring 2019
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Synchronous vs Asynchronous Messages

e Synchronous: There is a bound on how long a message takes to arrive
 Asynchronous: There is no bound on how long a message takes to arrive
o Key implication: what does a timeout mean”

e Synchronous: Something must have crashed

 Asynchronous: Network might just be slow
 Note: real networks are asynchronous
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Failure Models: Crash-Fail vs Partition Tolerant

e Crash-fail: Our system will be correct if the only tfailures we can ever see are a
node crashing

» Partition tolerant: Our system will be correct for crashing tailures and for
arbitrary network delays

 NB: If the network is synchronous, we are partition-tolerant by detault (no
partitions possible)
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2PC vs 3PC

o« 2PC
o Safety (always, for crash and partition failures)
* Liveness (if 1 node tails, we may block)
e 3PC
o Safety (assuming the only failure mode is crash, never partition)
* Liveness (can always proceed if 1 node fails)
e (Can we have some hybrid/best of both worlds?

J. Bell GMU CS 475 Spring 2019
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Can we fix it?

e Short answer: No.
* Fischer, Lynch & Paterson (FLP) Impossibility Result:

 Assume that nodes can only fail by crashing, network is reliable but can be
delayed arbitrarily

 Then, there can not be a deterministic algorithm for the consensus problem
subject to these failures
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FLP - Intuition

Why can’t we make a protocol for consensus/agreement that can tolerate
both partitions and node failures?

To tolerate a partition, you need to assume that eventually the partition will
heal, and the network will deliver the delayed packages

But the messages might be delayed forever

Hence, your protocol would not come to a result, until forever (it would not
have the liveness property)

GMU CS 475 Spring 2019
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Partitions

Insight: There is a "majority” partition here (B,C,D)
The "minority” know that they are not in the majority (A can only talk to Coordinator,
knows B, C, D might exist)

Coordinator INYel penulyfe Vi) (lsp4sTe

______Prrepared to commit Network Partltlon'"

- . O e, Py d - _ .- P . .
r’ ,’ . < — .”' 'l. : " -~ - &
o - . & = ‘S -~
: - g . : . q - - & « . B =
- — : . e h = - - g - » s N . o ! >

+ I
. - _l.
o - - 1
oo e
{

Parhmpant A

Yes Yes

UA@@N@@N Uneertam UASOISH

X ;‘-.Tlmeout behavior: Timeout behavior: abort
Commit!
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Partition Tolerance

Key idea: It you always have an odd number of nodes...

There will always be a minority partition and a majority partition

Give up processing in the minority until partition heals and network resumes
Mayjority can continue processing

GMU CS 475 Spring 2019
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Partition Tolerant Consensus Algorithms

 Decisions made by majority
o [ypically a fixed coordinator (leader) during a time period (epoch)

 How does the leader change?

J. Bell

Assume It starts out as an arbitrary node
The leader sends a heartbeat

If you haven't heard from the leader, then you challenge it by advancing to
the next epoch and try to elect a new one

If you don't get a majority of votes, you don't get to be leader
...hence no leader in a minority partition

GMU CS 475 Spring 2019
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Partition Tolerant Consensus Algorithms
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Abstract

Raft is a consensus algorithm for mani
log. It produces a result equivalent to (1
it is as efficient as Paxos, but its stru
from Paxos; this makes Raft more un¢
Paxos and also provides a better foun
ing practical systems. In order to enhanc
ity, Raft separates the key elements of ¢t
leader election, log replication, and safei
a stronger degree of coherency to redu
states that must be considered. Results 1
demonstrate that Raft is easier for studs
Paxos. Raft also includes a new mechan
the cluster membership, which uses ow
ties to guarantee safety.

1 Introduction

Consensus algorithms allow a collec
to work as a coherent group that can
ures of some of its members. Because 0
key role in building reliable large-scale s
Paxos [15, 16] has dominated the disct
sus algorithms over the last decade: most
of consensus are based on Paxos or infl
Paxos has become the primary vehicle 1
dents about consensus.

Unfortunately, Paxos is quite difficult
spite of numerous attempts to make it mg
Furthermore, its architecture requires ¢
to support practical systems. As a res
builders and students struggle with Paxg

After struggling with Paxos ourselw
find a new consensus algorithm that cot
ter foundation for system building and e

nrna{‘h XX/ Q nnnena] 1M fh‘}lf MIT NMrTManry

ZooKeeper: Wait-free coordination for Internet-scale systems

Patrick Hunt and Mahadev Konar
Yahoo! Grid

{phunt, mahadev}@yahoo-inc.com

Abstract

In this paper, we describe ZooKeeper, a service for co-
ordinating processes of distributed applications. Since
ZooKeeper is part of critical infrastructure, ZooKeeper
aims to provide a simple and high performance kernel
for building more complex coordination primitives at the
client. It incorporates elements from group messaging,
shared registers, and distributed lock services in a repli-
cated, centralized service. The interface exposed by Zoo-
Keeper has the wait-free aspects of shared registers with
an event-driven mechanism similar to cache invalidations
of distributed file systems to provide a simple, yet pow-
erful coordination service.

The ZooKeeper interface enables a high-performance
service implementation. In addition to the wait-free
property, ZooKeeper provides a per client guarantee of
FIFO execution of requests and linearizability for all re-
quests that change the ZooKeeper state. These design de-
cisions enable the implementation of a high performance
processing pipeline with read requests being satisfied by
local servers. We show for the target workloads, 2:1
to 100:1 read to write ratio, that ZooKeeper can handle
tens to hundreds of thousands of transactions per second.
This performance allows ZooKeeper to be used exten-
sively by client applications.

Flavio P. Junqueira and Benjamin Reed
Yahoo! Research
{fpj,breed}@yahoo-inc.com

that implement mutually exclusive access to critical re-
sources.

One approach to coordination is to develop services
for each of the different coordination needs. For exam-
ple, Amazon Simple Queue Service [3] focuses specif-
ically on queuing. Other services have been devel-
oped specifically for leader election [25] and configura-
tion [27]. Services that implement more powerful prim-
itives can be used to implement less powerful ones. For
example, Chubby [6] is a locking service with strong
synchronization guarantees. Locks can then be used to
implement leader election, group membership, etc.

When designing our coordination service, we moved
away from implementing specific primitives on the
server side, and instead we opted for exposing an API
that enables application developers to implement their
own primitives. Such a choice led to the implementa-
tion of a coordination kernel that enables new primitives
without requiring changes to the service core. This ap-
proach enables multiple forms of coordination adapted to
the requirements of applications, instead of constraining
developers to a fixed set of primitives.

When designing the API of ZooKeeper, we moved
away from blocking primitives, such as locks. Blocking
primitives for a coordination service can cause, among
other nroblems. slow or faultv clients to 1imnact neca-
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Paxos: High Level

One (or more) nodes decide to be leader (proposer)
Leader proposes a value, solicits acceptance from the rest of the nodes

Leader announces chosen value, or tries again it it failed to get all nodes to
agree on that value

Lots of tricky corners (failure handling)

In sum: requires only a majority of the (non-leader) nodes to accept a
oroposal for it to succeed

GMU CS 475 Spring 2019
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Paxos: Implementation Detalls

leaders acceptors leaders acceptors
A A o4 oy Oy A A o4
scout scout
>

P1a,<0,) ﬁ&
\ .\
p1b, O, e o1b, (1M I

o) Q3

__Jadopted,<0,A), {} adopted,(1,\), {} p2b, (1N
eﬁeempted,u M, {3
=3 commander =3 commander
P28,0.1,1,c P2a,(1.0,1,0
— Just kidding! —
p2by<0 ’7\’> o — p2b,<1 ,7\> a<0’)\'>
scout ‘// scout 4,,_——/”"”—’
§& e p‘,a’(l:A-'}
p1b,<0,7»>,{} p1b,<1,7~>’{}
I I
< p1b, 0N 1} — < p1b, (LAY A —
<1 | p2b,(0 'N> &1 | p2b,<1 ')\">
S o <
«— preempted,(0,\"), {} «— preempted,(1,A"), {}
¢ adopted,(O,\), {} ¢ adopted,<1,\), {}
commander commander
ﬁw § p2a,<1’)\',>3 I,C'
—> —>
p2b,<0 A — p2b,l N —
< <
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ZOOKeeper

o Distributed coordination service from Yahoo! originally, now maintained as
Apache project, used widely (key component of Hadoop etc)

* Highly available, tault tolerant, performant

* Designed so that YOU don't have to implement Paxos for:
o Distributed transactions/agreement/consensus

o We'll come back to ZooKeeper in a few weeks

J. Bell GMU CS 475 Spring 2019
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