
Consistency in Distributed Systems
CS 475, Spring 2019

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2019

Review: Transactions
2PC, 3PC

!2

J. Bell GMU CS 475 Spring 2019

If they can talk to each other, we know we can commit (good)

Digging Deeper into 2PC Failures

!3

Coordinator

Participant A

Participant B

Participant C

Participant D

Voted yes

Voted yes

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

Heard back “commit”

X

J. Bell GMU CS 475 Spring 2019

If they can talk to each other, we know that we can all abort (good)

Digging Deeper into 2PC Failures

!4

Coordinator

Participant A

Participant B

Participant C

Participant D

Voted no

Voted yes

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

Did not hear result

X

J. Bell GMU CS 475 Spring 2019

If they can talk to each other, we do not know if we can commit/abort (who knows
what the coordinator will do?)

Digging Deeper into 2PC Failures

!5

Coordinator

Participant A

Participant B

Participant C

Participant D

Voted yes

Voted yes

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

Did not hear result

X

J. Bell GMU CS 475 Spring 2019

• Goal: Avoid blocking on node failure
• How?

• Think about how 2PC is better than 1PC
• 1PC means you can never change your mind or have a failure after

committing
• 2PC still means that you can’t have a failure after committing (committing

is irreversible)

3 Phase Commit

!6

J. Bell GMU CS 475 Spring 2019

Safety in Crashes

!7

Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Prepared to commitPrepared to commitPrepared to commit

Crashed: do not commit or abort. When recovers,
asks coordinator what to do

Timeout behavior:
abort! Commit Authorized

Committed Aborted Aborted Aborted
X X X

J. Bell GMU CS 475 Spring 2019

Partitions

!8

Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Network Partition!!!Prepared to commitPrepared to commitPrepared to commit

Timeout behavior: abortTimeout behavior:
Commit!

Commit Authorized

Committed Aborted Aborted Aborted

Implication: if networks can delay arbitrarily, 3PC does not guarantee safety!!!!

Timeout behavior: abort

J. Bell GMU CS 475 Spring 2019

• Why can’t we make a protocol for consensus/agreement that can tolerate
both partitions and node failures?

• To tolerate a partition, you need to assume that eventually the partition will
heal, and the network will deliver the delayed packages

• But the messages might be delayed forever
• Hence, your protocol would not come to a result, until forever (it would not

have the liveness property)

FLP - Intuition

!9

J. Bell GMU CS 475 Spring 2019

Partitions

!10

Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Network Partition!!!Prepared to commitPrepared to commitPrepared to commit

Timeout behavior: abortTimeout behavior:
Commit!

Commit Authorized

Committed Aborted Aborted Aborted

Insight: There is a “majority” partition here (B,C,D)
The “minority” know that they are not in the majority (A can only talk to Coordinator,

knows B, C, D might exist)

J. Bell GMU CS 475 Spring 2019

• Consistency in distributed systems
• Ivy - a consistent replicated datastore
• Reminders:

• HW3 graded by end of week
• HW4 is out!

Today

!11

J. Bell GMU CS 475 Spring 2019

Recurring Solution in Distributed Systems: Replication

!12

A B

All accesses go to single server

J. Bell GMU CS 475 Spring 2019

Recurring Solution in Distributed Systems: Replication

!13

A B

Entire data set is copied

A B

J. Bell GMU CS 475 Spring 2019

• Improves performance:
• Client load can be evenly shared between servers
• Reduces latency: can place copies of data nearer to clients

• Improves availability:
• One replica fails, still can serve all requests from other replicas

Recurring Solution in Distributed Systems: Replication

!14

J. Bell GMU CS 475 Spring 2019

Partitioning + Replication

!15

A
[0…
100]

B [A…
N]

A
[101..
200]

B [O…
Z]

A
[0…
100]

B [A…
N]

A
[101..
200]

B [O…
Z]

A
[0…
100]

B [A…
N]

A
[101..
200]

B [O…
Z]

J. Bell GMU CS 475 Spring 2019

Partitioning + Replication

!16

A
[0…
100]

B
[A…
N]

A
[101..
200]

B [O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B [O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B [O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B [O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B [O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B [O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B [O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B [O…
Z]

A
[0…
100]

B
[A…
N]

A
[101..
200]

B [O…
Z]

DC NYC

LondonSF

A
[0…
100]

B [A…
N]

A
[101..
200]

B [O…
Z]

A
[0…
100]

B [A…
N]

A
[101..
200]

B [O…
Z]

A
[0…
100]

B [A…
N]

A
[101..
200]

B [O…
Z]

J. Bell GMU CS 475 Spring 2019

• Replication solves some problems, but creates a huge new one: consistency

Recurring Problem: Replication

!17

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

OK, we obviously need to actually do something here to replicate the data… but
what?

J. Bell GMU CS 475 Spring 2019

• The problem of consistency arrises whenever some data is replicated
• That data exists in (at least) two places at the same time
• What is a "valid" state?

Consistency

!18

J. Bell GMU CS 475 Spring 2019

Consistency

!19

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

Set A=5

“OK!”

5

J. Bell GMU CS 475 Spring 2019

• Why do we think the prior slide was consistent?
• Whenever we read, we see the most recent writes

• Even programs running on a single computer have to obey some
consistency model

• We talked about: linearizability, sequential consistency
• Remember that consistency comes at a price

Consistency

!20

J. Bell GMU CS 475 Spring 2019

Java Memory Model

!21

CPU 1

CPU 2

thread0()

thread1()

Main
Memory

CPU 1 Cache

CPU 2 Cache

100ns7ns

J. Bell GMU CS 475 Spring 2019

Quiz: What’s the output?

!22

class MyObj {
volatile int x = 0;
volatile int y = 0;

void thread0()
{
x = 1;
if(y==0)

 System.out.println(“OK");
}
void thread1()
{
y = 1;
if(x==0)

 System.out.println(“OK");
}

}

stack
thread0() thread1()
stack

heap
x y

Volatile keyword: no per-thread
caching of variables

J. Bell GMU CS 475 Spring 2019

Volatile Keyword

!23

CPU 1

CPU 2

thread0()

thread1()

CPU 1 Cache

CPU 2 Cache

Main
Memory

100ns7ns X

X

J. Bell GMU CS 475 Spring 2019

• This is a consistency model!
• Constraints on the system state that are observable by applications

• “When I write y=1, any future reads must say y=1”
• … except in Java, if it’s a non-volatile variable

• Clearly, this often comes at a cost (see simple example with volatile…)

Consistency

!24

J. Bell GMU CS 475 Spring 2019

• Strict consistency is often not practical
• Requires globally synchronizing clocks

• Sequential consistency gets close, in an easier way:
• There is some total order of operations so that:
• Each CPUs operations appear in order
• All CPUs see results according to that order (read most recent writes)

Sequential Consistency

!25

J. Bell GMU CS 475 Spring 2019

Distributed Shared Memory

!26

thread0()
stack

heap

DSM

x y

thread1()
stack

heap

J. Bell GMU CS 475 Spring 2019

• Assume each machine has a complete copy of memory
• Reads from local memory
• Writes broadcast update to other machines, then immediately continue

Naïve DSM

!27

class Machine1 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
x = 1;
if(y==0)

 System.out.println(“OK");
}

}

class Machine2 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
y = 1;
if(x==0)

 System.out.println(“OK");
}

}

J. Bell GMU CS 475 Spring 2019

• Assume each machine has a complete copy of memory
• Reads from local memory
• Writes broadcast update to other machines, then immediately continue

Naïve DSM

!28

class Machine1 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
x = 1;
if(y==0)

 System.out.println(“OK");
}

}

class Machine2 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
y = 1;
if(x==0)

 System.out.println(“OK");
}

}

1
11

1

J. Bell GMU CS 475 Spring 2019

• Assume each machine has a complete copy of memory
• Reads from local memory
• Writes broadcast update to other machines, then immediately continue

Naïve DSM

!29

class Machine1 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
x = 1;
if(y==0)

 System.out.println(“OK");
}

}

class Machine2 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
y = 1;
if(x==0)

 System.out.println(“OK");
}

}

1
11

1 Is this correct?

J. Bell GMU CS 475 Spring 2019

• Gets even more funny when we add a third host
• Many more interleaving possible

• Definitely not sequentially consistent
• Who is at fault?

• The DSM system?
• The app?
• The developers of the app, if they thought it would be sequentially

consistent.

Naïve DSM

!30

J. Bell GMU CS 475 Spring 2019

• How do we get this system to behave similar to Java’s volatile keyword?
• We want to ensure:

• Each machine’s own operations appear in order
• All machines see results according to some total order (each read sees the

most recent writes)
• We can say that some observed runtime ordering of operations can be

“explained” by a sequential ordering of operations that follow the above rules

Sequentially Consistent DSM

!31

J. Bell GMU CS 475 Spring 2019

• Each node must see the most recent writes before it reads that same data
• Performance is not great:

• Might make writes expensive: need to wait to broadcast and ensure other
nodes heard your new value

• Might make reads expensive: need to wait to make sure that there are no
pending writes that you haven’t heard about yet

Sequentially Consistent DSM

!32

J. Bell GMU CS 475 Spring 2019

• Each processor issues requests in the order specified by the program
• Can’t issue the next request until previous is finished

• Requests to an individual memory location are served from a single FIFO
queue

• Writes occur in single order
• Once a read observes the effect of a write, it’s ordered behind that write

Sequentially Consistent DSM

!33

J. Bell GMU CS 475 Spring 2019

Sequentially Consistent DSM

!34

CPU 1

CPU 2

thread0()

thread1()

CPU 1 Cache

CPU 2 Cache

Main
Memory

100ns7ns X

X
X FIFO

queue

1s?

J. Bell GMU CS 475 Spring 2019

• Integrated shared Virtual memory at Yale
• Provides shared memory across a group of workstations
• Might be easier to program with shared memory than with message passing

• Makes things look a lot more like one huge computer with hundreds of
CPUs instead of hundreds of computers with one CPU

Ivy DSM

!35

J. Bell GMU CS 475 Spring 2019

Ivy Architecture

!36

cached data

cached data cached data

Each node keeps a
cached copy of

each piece of data
it reads

If some data doesn’t
exist locally, request
it from remote node

J. Bell GMU CS 475 Spring 2019

• Support multiple readers, single writer semantics
• Write invalidate update protocol
• If I write some data, I must tell everyone who has cached it to get rid of their

cache

Ivy provides sequential consistency

!37

J. Bell GMU CS 475 Spring 2019

Ivy Architecture

!38

cached data

cached data cached data

Each node keeps a cached
copy of each piece of data

it reads

If some data doesn’t exist
locally, request it from

remote node

Write X=1
x=0

x=0

x=1

invalidate xinvalidate x

Read XRead X

read xread x

x=1x=1

J. Bell GMU CS 475 Spring 2019

• Ownership of data moves to be whoever last wrote it
• There are still some tricky bits:

• How do we know who owns some data?
• How do we ensure only one owner per data?
• How do we ensure all cached data are invalidated on writes?

• Solution: Central manager node

Ivy Implementation

!39

J. Bell GMU CS 475 Spring 2019

• Every piece of data has exactly one current owner
• Current owner is guaranteed to have a copy of that data
• If the owner has write permission, no other copies can exist
• If owner has read permission, it’s guaranteed to be identical to other copies
• Manager node knows about all of the copies
• Sounds a lot like HW4? :)

Ivy invariants

!40

J. Bell GMU CS 475 Spring 2019

HW4 Architecture

!41

cached data

cached data cached data

Each node keeps a cached
copy of each piece of data

it reads

Each node always has a
copy of the most recent

data

Write X=1
x=0

x=0

x=1

update x=1update x=1

Read XRead X

x=1

x=0

x=1

J. Bell GMU CS 475 Spring 2019

Ivy Architecture

!42

cached data

cached data cached data

Each node keeps a cached
copy of each piece of data

it reads

If some data doesn’t exist
locally, request it from

remote node

Write X=1
x=0

x=0

x=1

invalidate xinvalidate x

Read XRead X

read xread x

x=1x=1

J. Bell GMU CS 475 Spring 2019

• Ivy never copies the actual values until a replica reads them (unlike HW4)
• Invalidate messages are probably smaller than the actual data!

• Ivy only sends update (invalidate) messages to replicas who have a copy of
the data (unlike HW4)

• Maybe most data is not actively shared
• Ivy requires the lock server to keep track of a few more bits of information

(which replica has which data)
• With near certainty Ivy is a lot faster :)

Ivy vs HW4

!43

J. Bell GMU CS 475 Spring 2019

Sequential Consistency

!44

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

Set A=5

“OK!”

5

J. Bell GMU CS 475 Spring 2019

• Our protocol for sequential consistency does NOT guarantee that the system
will be available!

Availability

!45

A B A B

Set A=5

6 7 765

Read A

Set A=5

J. Bell GMU CS 475 Spring 2019

Consistent + Available

!46

A B A B

Set A=5

6 7 765

“OK”! “5”!

Set A=5

Read A

Assume
replica failed

J. Bell GMU CS 475 Spring 2019

Still broken...

!47

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume

replica failed

Read A “6”!

J. Bell GMU CS 475 Spring 2019

• The communication links between nodes may fail arbitrarily
• But other nodes might still be able to reach that node

Network Partitions

!48

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume

replica failed

Read A “6”!

J. Bell GMU CS 475 Spring 2019

• Pick two of three:
• Consistency: All nodes see the same data at the same time (strong

consistency)
• Availability: Individual node failures do not prevent survivors from continuing

to operate
• Partition tolerance: The system continues to operate despite message loss

(from network and/or node failure)
• You can not have all three, ever*

• If you relax your consistency guarantee (we’ll talk about in a few weeks), you
might be able to guarantee THAT…

CAP Theorem

!49

J. Bell GMU CS 475 Spring 2019

• C+A: Provide strong consistency and availability, assuming there are no
network partitions

• C+P: Provide strong consistency in the presence of network partitions;
minority partition is unavailable

• A+P: Provide availability even in presence of partitions; no strong consistency
guarantee

CAP Theorem

!50

J. Bell GMU CS 475 Spring 2019

Still broken...

!51

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

Set A=5

“OK!”

The robot devil will return in lecture 23

J. Bell GMU CS 475 Spring 2019

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

This work is licensed under a Creative Commons Attribution-
ShareAlike license

!52

http://creativecommons.org/licenses/by-sa/4.0/

