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Review: Transactions 
2PC, 3PC
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If they can talk to each other, we know we can commit (good)

Digging Deeper into 2PC Failures
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Coordinator

Participant A

Participant B

Participant C

Participant D

Voted yes

Voted yes

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

Heard back “commit”

X



J. Bell GMU CS 475 Spring 2019

If they can talk to each other, we know that we can all abort (good)

Digging Deeper into 2PC Failures
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Coordinator

Participant A

Participant B

Participant C

Participant D

Voted no

Voted yes

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

Did not hear result

X
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If they can talk to each other, we do not know if we can commit/abort (who knows 
what the coordinator will do?)

Digging Deeper into 2PC Failures
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Coordinator

Participant A

Participant B

Participant C

Participant D

Voted yes

Voted yes

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

Did not hear result

X
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• Goal: Avoid blocking on node failure 
• How? 

• Think about how 2PC is better than 1PC 
• 1PC means you can never change your mind or have a failure after 

committing 
• 2PC still means that you can’t have a failure after committing (committing 

is irreversible)

3 Phase Commit

!6
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Safety in Crashes
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Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Prepared to commitPrepared to commitPrepared to commit

Crashed: do not commit or abort. When recovers, 
asks coordinator what to do 

Timeout behavior: 
abort! Commit Authorized

Committed Aborted Aborted Aborted
X X X
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Partitions
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Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Network Partition!!!Prepared to commitPrepared to commitPrepared to commit

Timeout behavior: abortTimeout behavior: 
Commit!

Commit Authorized

Committed Aborted Aborted Aborted

Implication: if networks can delay arbitrarily, 3PC does not guarantee safety!!!!

Timeout behavior: abort



J. Bell GMU CS 475 Spring 2019

• Why can’t we make a protocol for consensus/agreement that can tolerate 
both partitions and node failures? 

• To tolerate a partition, you need to assume that eventually the partition will 
heal, and the network will deliver the delayed packages 

• But the messages might be delayed forever
• Hence, your protocol would not come to a result, until forever (it would not 

have the liveness property)

FLP - Intuition

!9
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Partitions
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Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Network Partition!!!Prepared to commitPrepared to commitPrepared to commit

Timeout behavior: abortTimeout behavior: 
Commit!

Commit Authorized

Committed Aborted Aborted Aborted

Insight: There is a “majority” partition here (B,C,D) 
The “minority” know that they are not in the majority (A can only talk to Coordinator, 

knows B, C, D might exist)
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• Consistency in distributed systems 
• Ivy - a consistent replicated datastore 
• Reminders: 

• HW3 graded by end of week 
• HW4 is out!

Today
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Recurring Solution in Distributed Systems: Replication

!12

A B

All accesses go to single server
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Recurring Solution in Distributed Systems: Replication

!13

A B

Entire data set is copied

A B
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• Improves performance: 
• Client load can be evenly shared between servers 
• Reduces latency: can place copies of data nearer to clients 

• Improves availability: 
• One replica fails, still can serve all requests from other replicas

Recurring Solution in Distributed Systems: Replication

!14
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Partitioning + Replication
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Partitioning + Replication
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• Replication solves some problems, but creates a huge new one: consistency

Recurring Problem: Replication

!17

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

OK, we obviously need to actually do something here to replicate the data… but 
what?
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• The problem of consistency arrises whenever some data is replicated 
• That data exists in (at least) two places at the same time 
• What is a "valid" state?

Consistency

!18
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Consistency
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A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

Set A=5

“OK!”

5



J. Bell GMU CS 475 Spring 2019

• Why do we think the prior slide was consistent? 
• Whenever we read, we see the most recent writes 

• Even programs running on a single computer have to obey some 
consistency model 

• We talked about: linearizability, sequential consistency 
• Remember that consistency comes at a price

Consistency

!20
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Java Memory Model

!21

CPU 1

CPU 2

thread0()

thread1()

Main 
Memory

CPU 1 Cache

CPU 2 Cache

100ns7ns
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Quiz: What’s the output?

!22

class MyObj { 
volatile int x = 0; 
volatile int y = 0; 

void thread0() 
{ 
x = 1; 
if(y==0) 

  System.out.println(“OK"); 
} 
void thread1() 
{ 
y = 1; 
if(x==0) 

 System.out.println(“OK"); 
} 

} 

stack
thread0() thread1()
stack

heap
x y

Volatile keyword: no per-thread 
caching of variables
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Volatile Keyword

!23

CPU 1

CPU 2

thread0()

thread1()

CPU 1 Cache

CPU 2 Cache

Main 
Memory

100ns7ns X

X
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• This is a consistency model! 
• Constraints on the system state that are observable by applications 

• “When I write y=1, any future reads must say y=1” 
• … except in Java, if it’s a non-volatile variable 

• Clearly, this often comes at a cost (see simple example with volatile…)

Consistency

!24
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• Strict consistency is often not practical 
• Requires globally synchronizing clocks 

• Sequential consistency gets close, in an easier way: 
• There is some total order of operations so that: 
• Each CPUs operations appear in order 
• All CPUs see results according to that order (read most recent writes)

Sequential Consistency

!25
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Distributed Shared Memory

!26

thread0()
stack

heap

DSM

x y

thread1()
stack

heap
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• Assume each machine has a complete copy of memory 
• Reads from local memory 
• Writes broadcast update to other machines, then immediately continue

Naïve DSM

!27

class Machine1 { 
DSMInt x = 0; 
DSMInt y = 0; 

static void main(String[] args) 
{ 
x = 1; 
if(y==0) 

  System.out.println(“OK"); 
} 

} 

class Machine2 { 
DSMInt x = 0; 
DSMInt y = 0; 

static void main(String[] args) 
{ 
y = 1; 
if(x==0) 

 System.out.println(“OK"); 
} 

} 
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• Assume each machine has a complete copy of memory 
• Reads from local memory 
• Writes broadcast update to other machines, then immediately continue

Naïve DSM

!28

class Machine1 { 
DSMInt x = 0; 
DSMInt y = 0; 

static void main(String[] args) 
{ 
x = 1; 
if(y==0) 

  System.out.println(“OK"); 
} 

} 

class Machine2 { 
DSMInt x = 0; 
DSMInt y = 0; 

static void main(String[] args) 
{ 
y = 1; 
if(x==0) 

 System.out.println(“OK"); 
} 

} 

1
11

1
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• Assume each machine has a complete copy of memory 
• Reads from local memory 
• Writes broadcast update to other machines, then immediately continue

Naïve DSM

!29

class Machine1 { 
DSMInt x = 0; 
DSMInt y = 0; 

static void main(String[] args) 
{ 
x = 1; 
if(y==0) 

  System.out.println(“OK"); 
} 

} 

class Machine2 { 
DSMInt x = 0; 
DSMInt y = 0; 

static void main(String[] args) 
{ 
y = 1; 
if(x==0) 

 System.out.println(“OK"); 
} 

} 

1
11

1 Is this correct?



J. Bell GMU CS 475 Spring 2019

• Gets even more funny when we add a third host 
• Many more interleaving possible 

• Definitely not sequentially consistent 
• Who is at fault? 

• The DSM system? 
• The app? 
• The developers of the app, if they thought it would be sequentially 

consistent.

Naïve DSM

!30
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• How do we get this system to behave similar to Java’s volatile keyword? 
• We want to ensure: 

• Each machine’s own operations appear in order 
• All machines see results according to some total order (each read sees the 

most recent writes) 
• We can say that some observed runtime ordering of operations can be 

“explained” by a sequential ordering of operations that follow the above rules

Sequentially Consistent DSM

!31
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• Each node must see the most recent writes before it reads that same data 
• Performance is not great: 

• Might make writes expensive: need to wait to broadcast and ensure other 
nodes heard your new value 

• Might make reads expensive: need to wait to make sure that there are no 
pending writes that you haven’t heard about yet

Sequentially Consistent DSM

!32
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• Each processor issues requests in the order specified by the program 
• Can’t issue the next request until previous is finished 

• Requests to an individual memory location are served from a single FIFO 
queue 

• Writes occur in single order 
• Once a read observes the effect of a write, it’s ordered behind that write

Sequentially Consistent DSM

!33
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Sequentially Consistent DSM

!34

CPU 1

CPU 2

thread0()

thread1()

CPU 1 Cache

CPU 2 Cache

Main 
Memory

100ns7ns X

X
X FIFO 

queue

1s?
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• Integrated shared Virtual memory at Yale 
• Provides shared memory across a group of workstations 
• Might be easier to program with shared memory than with message passing 

• Makes things look a lot more like one huge computer with hundreds of 
CPUs instead of hundreds of computers with one CPU

Ivy DSM

!35
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Ivy Architecture

!36

cached data

cached data cached data

Each node keeps a 
cached copy of  

each piece of data 
it reads

If some data doesn’t 
exist locally, request 
it from remote node
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• Support multiple readers, single writer semantics 
• Write invalidate update protocol 
• If I write some data, I must tell everyone who has cached it to get rid of their 

cache

Ivy provides sequential consistency

!37
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Ivy Architecture

!38

cached data

cached data cached data

Each node keeps a cached 
copy of  each piece of data 

it reads

If some data doesn’t exist 
locally, request it from 

remote node

Write X=1
x=0

x=0

x=1

invalidate xinvalidate x

Read XRead X

read xread x

x=1x=1
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• Ownership of data moves to be whoever last wrote it 
• There are still some tricky bits: 

• How do we know who owns some data? 
• How do we ensure only one owner per data? 
• How do we ensure all cached data are invalidated on writes? 

• Solution: Central manager node

Ivy Implementation

!39
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• Every piece of data has exactly one current owner 
• Current owner is guaranteed to have a copy of that data 
• If the owner has write permission, no other copies can exist 
• If owner has read permission, it’s guaranteed to be identical to other copies 
• Manager node knows about all of the copies 
• Sounds a lot like HW4? :)

Ivy invariants

!40
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HW4 Architecture

!41

cached data

cached data cached data

Each node keeps a cached 
copy of  each piece of data 

it reads

Each node always has a 
copy of the most recent 

data

Write X=1
x=0

x=0

x=1

update x=1update x=1

Read XRead X

x=1

x=0

x=1
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Ivy Architecture

!42

cached data

cached data cached data

Each node keeps a cached 
copy of  each piece of data 

it reads

If some data doesn’t exist 
locally, request it from 

remote node

Write X=1
x=0

x=0

x=1

invalidate xinvalidate x

Read XRead X

read xread x

x=1x=1
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• Ivy never copies the actual values until a replica reads them (unlike HW4) 
• Invalidate messages are probably smaller than the actual data! 

• Ivy only sends update (invalidate) messages to replicas who have a copy of 
the data (unlike HW4) 

• Maybe most data is not actively shared 
• Ivy requires the lock server to keep track of a few more bits of information 

(which replica has which data) 
• With near certainty Ivy is a lot faster :)

Ivy vs HW4

!43
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Sequential Consistency

!44

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

Set A=5

“OK!”

5
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• Our protocol for sequential consistency does NOT guarantee that the system 
will be available!

Availability

!45

A B A B

Set A=5

6 7 765

Read A

Set A=5
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Consistent + Available

!46

A B A B

Set A=5

6 7 765

“OK”! “5”!

Set A=5

Read A

Assume 
replica failed
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Still broken...

!47

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume 

replica failed

Read A “6”!
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• The communication links between nodes may fail arbitrarily 
• But other nodes might still be able to reach that node

Network Partitions

!48

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume 

replica failed

Read A “6”!
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• Pick two of three: 
• Consistency: All nodes see the same data at the same time (strong 

consistency) 
• Availability: Individual node failures do not prevent survivors from continuing 

to operate 
• Partition tolerance: The system continues to operate despite message loss 

(from network and/or node failure) 
• You can not have all three, ever*

• If you relax your consistency guarantee (we’ll talk about in a few weeks), you 
might be able to guarantee THAT…

CAP Theorem

!49
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• C+A: Provide strong consistency and availability, assuming there are no 
network partitions 

• C+P: Provide strong consistency in the presence of network partitions; 
minority partition is unavailable 

• A+P: Provide availability even in presence of partitions; no strong consistency 
guarantee

CAP Theorem

!50
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Still broken...

!51

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

Set A=5

“OK!”

The robot devil will return in lecture 23
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• You are free to: 
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• No additional restrictions — You may not apply legal terms or technological measures that 
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This work is licensed under a Creative Commons Attribution-
ShareAlike license
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