
Inconsistency in Distributed Systems
CS 475, Spring 2019

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2019

• Replication solves some problems, but creates a huge new one: consistency

Recurring Problem: Replication

!2

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

OK, we obviously need to actually do something here to replicate the data… but
what?

J. Bell GMU CS 475 Spring 2019

Sequentially Consistent DSM

!3

CPU 1

CPU 2

thread0()

thread1()

CPU 1 Cache

CPU 2 Cache

Main
Memory

100ns7ns X

X
X FIFO

queue

1s?

J. Bell GMU CS 475 Spring 2019

Ivy Architecture

!4

cached data

cached data cached data

Each node keeps a
cached copy of

each piece of data
it reads

If some data doesn’t
exist locally, request
it from remote node

J. Bell GMU CS 475 Spring 2019

• Ivy never copies the actual values until a replica reads them (unlike HW4)
• Invalidate messages are probably smaller than the actual data!

• Ivy only sends update (invalidate) messages to replicas who have a copy of
the data (unlike HW4)

• Maybe most data is not actively shared
• Ivy requires the lock server to keep track of a few more bits of information

(which replica has which data)
• With near certainty Ivy is a lot faster :)

Ivy vs HW4

!5

J. Bell GMU CS 475 Spring 2019

• Consistency in distributed systems - can we have it all? If not, what can we
get?

• Relaxed consistency models
• Reminders:

• HW3 graded by end of week
• HW4 is out!

Today

!6

J. Bell GMU CS 475 Spring 2019

Sequential Consistency

!7

A B A B

Set A=5

6 7 765

“OK”! Read A “5”!

Set A=5

“OK!”

5

J. Bell GMU CS 475 Spring 2019

• Our protocol for sequential consistency does NOT guarantee that the system
will be available!

Availability

!8

A B A B

Set A=5

6 7 765

Read A

Set A=5

J. Bell GMU CS 475 Spring 2019

Consistent + Available

!9

A B A B

Set A=5

6 7 765

“OK”! “5”!

Set A=5

Read A

Assume
replica failed

J. Bell GMU CS 475 Spring 2019

Still broken...

!10

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume

replica failed

Read A “6”!

J. Bell GMU CS 475 Spring 2019

• The communication links between nodes may fail arbitrarily
• But other nodes might still be able to reach that node

Network Partitions

!11

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume

replica failed

Read A “6”!

J. Bell GMU CS 475 Spring 2019

• Pick two of three:
• Consistency: All nodes see the same data at the same time

(sequential consistency)
• Availability: Individual node failures do not prevent survivors from

continuing to operate
• Partition tolerance: The system continues to operate despite

message loss (from network and/or node failure)
• You can not have all three, ever

CAP Theorem

!12

O
ur goals as

 system
 builders

A property of
 the environm

ent

J. Bell GMU CS 475 Spring 2019

• FLP: Can not guarantee both liveness and agreement assuming messages
may be delayed but are eventually delivered

• CAP: Can not guarantee consistency, availability, partition-tolerance
assuming messages may be dropped

• Nice comparison: http://the-paper-trail.org/blog/flp-and-cap-arent-the-same-
thing/

CAP Theorem vs FLP

!13

http://the-paper-trail.org/blog/flp-and-cap-arent-the-same-thing/
http://the-paper-trail.org/blog/flp-and-cap-arent-the-same-thing/

J. Bell GMU CS 475 Spring 2019

• C+A: Provide strong consistency and availability, assuming there are no
network partitions

• C+P: Provide strong consistency in the presence of network partitions;
minority partition is unavailable

• A+P: Provide availability even in presence of partitions; no sequential
consistency guarantee, maybe can guarantee something else

CAP Theorem

!14

J. Bell GMU CS 475 Spring 2019

Still broken...

!15

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

Set A=5

“OK!”

The robot devil will return in lecture 25

J. Bell GMU CS 475 Spring 2019

• We can relax two design principles:
• How stale reads can be
• The ordering of writes across the replicas

Relaxing Consistency

!16

Allowing Stale Reads

P1 W(X) 0 R(X) R(X) R(X)

P2 W(X) 1 R(X) W (X) 0 R(X)

P3 R(X) R(X) R(X)

J. Bell GMU CS 475 Spring 2019

Allowing Stale Reads

!18

class MyObj {
 int x = 0;
 int y = 0;

 void thread0()
 {
 x = 1;
 if(y==0)
 System.out.println(“OK");
 }
 void thread1()
 {
 y = 1;
 if(x==0)
 System.out.println(“OK");
 }
}

"OK"

"OK"
"OK"

""

Java’s memory model is “relaxed” in that you can have stale reads

J. Bell GMU CS 475 Spring 2019

• Intuition: less constraints means less coordination overhead, less prone to
partition failure

Relaxing Consistency

!19

P1 W(X) 0 R(X) [0,1] R(X) [0,1] R(X) [0,1]

P2 W(X) 1 R(X) [0,1] W (X) 0 R(X) [0,1]

P3 R(X) [0,1] R(X) [0,1] R(X) [0,1]

J. Bell GMU CS 475 Spring 2019

• Assume each machine has a complete copy of memory
• Reads from local memory
• Writes broadcast update to other machines, then immediately continue

Naïve DSM

!20

class Machine1 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
x = 1;
if(y==0)

 System.out.println(“OK");
}

}

class Machine2 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
y = 1;
if(x==0)

 System.out.println(“OK");
}

}

J. Bell GMU CS 475 Spring 2019

• Assume each machine has a complete copy of memory
• Reads from local memory
• Writes broadcast update to other machines, then immediately continue

Naïve DSM

!21

class Machine1 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
x = 1;
if(y==0)

 System.out.println(“OK");
}

}

class Machine2 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
y = 1;
if(x==0)

 System.out.println(“OK");
}

}

1
11

1

J. Bell GMU CS 475 Spring 2019

• Assume each machine has a complete copy of memory
• Reads from local memory
• Writes broadcast update to other machines, then immediately continue

Naïve DSM

!22

class Machine1 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
x = 1;
if(y==0)

 System.out.println(“OK");
}

}

class Machine2 {
DSMInt x = 0;
DSMInt y = 0;

static void main(String[] args)
{
y = 1;
if(x==0)

 System.out.println(“OK");
}

}

1
11

1 Is this correct?

J. Bell GMU CS 475 Spring 2019

• It definitely is not sequentially consistent
• Are there any guarantees that it provides though?

• Reads can be stale
• Writes can be re-ordered
• Not really.

• Can we come up with something more clever though with SOME guarantee?
• (Not as is, but with some modifications maybe it’s…)

Naïve DSM

!23

J. Bell GMU CS 475 Spring 2019

• An execution is causally-consistent if all causally-related read/write
operations are executed in an order that reflects their causality

• Reads are fresh ONLY for writes that they are dependent on
• Causally-related writes appear in order, but not in order to others
• Concurrent writes can be seen in different orders by different machines

• Compare to sequential consistency: every machine must see the same
order of operations!

Causal Consistency

!24

J. Bell GMU CS 475 Spring 2019

Causal Consistency

!25

P1 W(X)a W(X)c
P2 R(X)a W(X)b
P3 R(X)a R(X)c R(X)b

P4 R(X)a R(X)b R(x)c

Causally Consistent. W(X) b and W(X) c are not related, hence could have
happened one either order.

W(X)a and W(X)B ARE causally related and must occur in this order

J. Bell GMU CS 475 Spring 2019

Causal Consistency

!26

P1 W(X)a
P2 R(X)a W(X)b
P3 R(x)b R(x)a
P4 R(x)a R(x)b

NOT Causally Consistent. X couldn’t have been b after it was a

P1 W(X)a
P2 W(X)b
P3 R(x)b R(x)a
P4 R(x)a R(x)b

Causally Consistent. X can be a or b concurrently

J. Bell GMU CS 475 Spring 2019

• It is clearly weaker than sequential consistency
• (Note that anything that is sequentially consistent is also causally

consistent)
• Many more operations for concurrency

• Parallel (non-dependent) operations can occur in parallel in different places
• Sequential would enforce a global ordering

• E.g. if W(X) and W(Y) occur at the same time, and without dependencies,
then they can occur without any locking

• Still requires some perhaps complicated implementation - each client must
know what is related to what.

Why Causal Consistency?

!27

J. Bell GMU CS 475 Spring 2019

• Allow stale reads, but ensure that reads will eventually reflect the previously
written values

• Eventually: milliseconds, seconds, minutes, hours, years…
• Writes are NOT ordered as executed

• Allows for conflicts. Consider: Dropbox
• Git is eventually consistent

Eventual Consistency

!28

J. Bell GMU CS 475 Spring 2019

• More concurrency than strict, sequential or causal
• These require highly available connections to send messages, and

generate lots of chatter
• Far looser requirements on network connections

• Partitions: OK!
• Disconnected clients: OK!
• Always available!

• Possibility for conflicting writes :(

Eventual Consistency

!29

Review: Ivy Architecture
cached data

cached data cached data

Each node keeps a cached
copy of each piece of data

it reads

If some data doesn’t exist
locally, request it from

remote node

Write X=1
x=0

x=0

x=1

invalidate xinvalidate x

Read XRead X

read xread x

x=1x=1

All of these messages…
All of the clients must always be online!

Relax!

J. Bell GMU CS 475 Spring 2019

• Sequential: “Pessimistic” concurrency control
• Assume that everything could cause a conflict, decide on an update order

as things execute, then enforce it
• Eventual: “Optimistic” concurrency control

• Just do everything, and if you can’t resolve what something should be, sort
it out later

• Can be tough to resolve in general case

Sequential vs Eventual Consistency

!31

J. Bell GMU CS 475 Spring 2019

Eventual Consistency: Distributed Filesystem

!32

When everything can talk, it’s easy to synchronize, right?
Goal: Everything eventually becomes synchronized.
No lost updates (don’t replace new version with old)

J. Bell GMU CS 475 Spring 2019

Eventual Consistency: Distributed Filesystem

!33

When everything can talk, it’s easy to synchronize, right?
Goal: Everything eventually becomes synchronized.
No lost updates (don’t replace new version with old)

Fix: Add
coordinating sync

server

J. Bell GMU CS 475 Spring 2019

• Role of the sync server:
• Resolve conflicting changes, report conflicts to user
• Do not allow sync between clients
• Detect if updates are sequential
• Enforce ordering constraints

Eventual Consistency: Distributed Filesystem

!34

J. Bell GMU CS 475 Spring 2019

Detecting Conflicts

!35

Do we just use timestamps?

write x = a

write x = b

t=0

t=1

J. Bell GMU CS 475 Spring 2019

Detecting Conflicts

!36

write x = a

write x = b

Do we just use timestamps?

t=0

t=1

NO, what if clocks are out of sync?
NO does not actually detect conflicts

J. Bell GMU CS 475 Spring 2019

Detecting Conflicts

!37

write x = a

write x = b

Solution: Track version history on clients

v=0

v=0

Still doesn’t tell us what to do with a conflict

J. Bell GMU CS 475 Spring 2019

• What can we guarantee in disconnected operation?
• Monotinic-reads: any future reads will return the same or newer value (never

older)
• Monotonic-writes: A processes’ writes are always processed in order
• Read-you-writes
• Writes follow reads

Client-Centric Consistency

!38

Eventually Consistent +
Available + Partition Tolerant

A B A B

Set A=5

6 7 765

“OK”!

Set A=5
Assume

replica failed

Read A “6”!

5

Read A “5”!

J. Bell GMU CS 475 Spring 2019

• Sequential consistency
• All over - it’s the most intuitive

• Causal consistency
• “Increasingly useful” but not really widely used - still pay coordination cost,

unclear what the performance benefits are
• Eventual consistency

• Very popular in industry and academia
• File synchronizers, Amazon’s Bayou and more

Choosing a consistency model

!40

J. Bell GMU CS 475 Spring 2019

• Problem: >1 billion active users
• Solutions: Thousands of servers across the world
• What kind of consistency guarantees are reasonable? Need 100% availability!
• If I post a story on my news feed, is it OK if it doesn’t immediately show up on

yours?
• Two users might not see the same data at the same time
• Now this is “solved” anyway because there is no “sort by most recent first”

option anyway

Example: Facebook

!41

J. Bell GMU CS 475 Spring 2019

• Reservations and flight inventory are managed by a GDS (Global Distribution
System), who acts as a middle broker between airlines, ticket agencies and
consumers [Except for Southwest and Air New Zealand and other oddballs]

• GDS needs to sell as many seats as possible within given constraints
• If I have 100 seats for sale on a flight, does it matter if reservations for flights

are reconciled immediately?
• If I have 5 seats for sale on a flight, does it matter if reservations are

reconciled immediately?

Example: Airline Reservations

!42

J. Bell GMU CS 475 Spring 2019

• Result: Reservations can be made using either a strong consistency model or
a weak, eventual one

• Most reservations are made under the normal strong model (reservation is
confirmed immediately)

• GDS also supports “Long Sell” - issue a reservation without confirmed
availability, need to eventually reconcile it

• Long sells require the seller to make clear to the customer that even though
there’s a confirmation number it’s not confirmed!

Example: Airline Reservations

!43

J. Bell GMU CS 475 Spring 2019

• What consistency guarantees do a filesystem provide?
• read, write, sync, close
• On sync, guarantee writes are persisted to disk
• Readers see most recent
• What does a network file system do?

Filesystem consistency

!44

J. Bell GMU CS 475 Spring 2019

• How do you maintain these same semantics?
• (Cheat answer): Very, very expensive

• EVERY write needs to propagate out
• EVERY read needs to make sure it sees the most recent write
• Oof. Just like Ivy.

Network Filesystem Consistency

!45

J. Bell GMU CS 475 Spring 2019

• Strong consistency (sequential or strict) comes at a tradeoff: performance,
availability

• Weaker consistency also has a tradeoff (weaker consistency)
• But: applications can make these design choices clear to end-users

• Facebook
• Dropbox

• Next week: examples of two systems that involve replication and handle
consistency differently: DNS, NFS

Consistency Takeaways

!46

J. Bell GMU CS 475 Spring 2019

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

This work is licensed under a Creative Commons Attribution-
ShareAlike license

!47

http://creativecommons.org/licenses/by-sa/4.0/

