
Distributed Filesystems - NFS
CS 475, Spring 2019

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2019

Review: Domain Name System

org comedu govnet

gmu

www cs

www

uk

root-servers

www

Global
Layer

Administrational
Layer

Managerial
Layer

!2

Root Servers

J. Bell GMU CS 475 Spring 2019

Review: Domain Name System - Root servers

www.root-servers.net !3

Apia, Samoa

Papeete, French Polynesia

Marshall Islands

http://www.root-servers.net

J. Bell GMU CS 475 Spring 2019

Why root servers in the Pacific?

!4

J. Bell GMU CS 475 Spring 2019

Why no root servers in the Atlantic?

!5

J. Bell GMU CS 475 Spring 2019

Review: Domain Name System - Resolution

edu

gmu

root-server.net

dns1.nic.uk uk

ac

www

ic

ns0.ja.net

ns0.ic.ac.uk

www.ic.ac.uk?

155.198.64.24
146.179.40.24

!6

A: 155.198.64.24
A: 146.179.40.24

Local NS
(e.g., 192.168.1.1)

J. Bell GMU CS 475 Spring 2019

• Modern Operating Systems all have a zeroconf daemon
• Apple: Bonjour protocol

• mDNSResponder released as open source, used by Android

• Microsoft:
• Netbios (not mDNS)

• Until Windows XP (at least?)
• Link-Local Multicast Name Resolution (LLMNR)

• From Windows Vista

• GNU/Linux
• Avahi service

• Building block of modern IOT devices

Review: DNS-SD in practice - Zeroconf

!7

J. Bell GMU CS 475 Spring 2019

• What consistency guarantees do a filesystem provide?
• read, write, sync, close
• On sync, guarantee writes are persisted to disk
• Readers see most recent
• What does a network file system do?

Review: Filesystem consistency

!8

J. Bell GMU CS 475 Spring 2019

• How do you maintain these same semantics?
• (Cheat answer): Very, very expensive

• EVERY write needs to propagate out
• EVERY read needs to make sure it sees the most recent write
• Oof. Just like Ivy.
• Can’t get availability
• What should we do? <—— today’s lecture

Review: Network Filesystem Consistency

!9

J. Bell GMU CS 475 Spring 2019

• This week - case studies in replication
• Today: NFS - a very widely used distributed file system
• Reminder:

• HW4 is due 4/15!

Today

!10

J. Bell GMU CS 475 Spring 2019

• File:
• Name
• Size (bytes)
• Create/Access/Modification Time
• Contents (binary)

• Directory:
• Maintains a list of the files (and their metadata) in that directory

Files

!11

J. Bell GMU CS 475 Spring 2019

• Create
• Write – at write pointer location
• Read – at read pointer location
• Reposition within file - seek
• Delete
• Truncate
• Open(Fi) – search the directory structure on disk for entry Fi, and move the

content of entry to memory
• Close (Fi) – move the content of entry Fi in memory to directory structure on disk

File Operations

!12

J. Bell GMU CS 475 Spring 2019

• Search for a file
• Create a file
• Delete a file
• List a directory
• Rename a file
• Traverse the file system

Directory Operations

!13

J. Bell GMU CS 475 Spring 2019

• Provided by some operating systems and file systems
• Similar to reader-writer locks
• Shared lock similar to reader lock – several processes can acquire

concurrently
• Exclusive lock similar to writer lock

• Mediates access to a file
• Mandatory or advisory:

• Mandatory – access is denied depending on locks held and requested
• Advisory – processes can find status of locks and decide what to do

Open file locking

!14

J. Bell GMU CS 475 Spring 2019

• Directories contain information about the files in them
• Directories can be nested
• Operations on directories:

• Create file
• List files
• Delete file
• Rename file

Directory Structure

!15

J. Bell GMU CS 475 Spring 2019

• Define how files and directory structure is maintained
• Exposes this information to the OS via a standard interface (driver)
• OS can provide user with access to that filesystem when it is mounted

• (Example: NFS, AFP, SMB)

Filesystems

!16

J. Bell GMU CS 475 Spring 2019

• Directory management (maps entries in a hierarchy of names to files-on-disk)
• File management (manages adding, reading, changing, appending, deleting)

individual files
• Space management: where on disk to store these things?
• Metadata management

Filesystem Functionality

!17

J. Bell GMU CS 475 Spring 2019

Mounting Filesystems

!18

/

Users

jon

Volumes

cs475

Internal HD (HFS+)

CFS

cfsmnt1

folder

Remote Server (AFP)

gmuhome

…

External HD (HFS+)

externalHD

…

CFS
folder

cfsmnt2

Filesystem driver is passed path only from its
mount point (e.g. it doesn’t care where it is

mounted)

J. Bell GMU CS 475 Spring 2019

• Goals
• Shared filesystem that will look the same as a local filesystem
• Scale to many TB’s of data/many users
• Fault tolerance
• Performance

Distributed File Systems

!19

J. Bell GMU CS 475 Spring 2019

• Challenges:
• Heterogeneity (different kinds of computers with different kinds of network

links)
• Scale (maybe lots of users)
• Security (access control)
• Failures
• Concurrency

Distributed File Systems

!20

J. Bell GMU CS 475 Spring 2019

• Use RPC to forward every filesystem operation to the server
• Server serializes all accesses, performs them, and sends back result.

Strawman Approach

!21

Client Server
read(FD,10); read(FD,10);

File System
Server Stub

RPC Magic

File System
Client Stub

J. Bell GMU CS 475 Spring 2019

Strawman Approach

!22

Client Server

open(“file”)

seek(fd, 10)

fd

read(fd)

J. Bell GMU CS 475 Spring 2019

• Use RPC to forward every filesystem operation to the server
• Server serializes all accesses, performs them, and sends back result.
• Great: Same behavior as if both programs were running on the same local

filesystem!
• Bad: Performance can stink. Latency of access to remote server often much

higher than to local memory

Strawman Approach

!23

J. Bell GMU CS 475 Spring 2019

• Cache file blocks, file headers, etc., at both clients and servers.
• Advantage: No network traffic if open/read/write/close can be done locally.
• But: failures and cache consistency.
• NFS trades some consistency for increased performance... what does

caching get us?

NFS

!24

J. Bell GMU CS 475 Spring 2019

Cache Consistency: Update Visibility

!25

Client 1
cache

Server
File 1: “a”

Client 2
cache

1. Read File: “a”

File 1: “a”

2. Write File: “b”

File 1: “b”File 1: “b”

Update Visibility: When do Client 2’s writes become apparent to the server?

J. Bell GMU CS 475 Spring 2019

Cache Consistency: Stale reads

!26

Client 1
cache

Server
File 1: “a”

Client 2
cache

1. Read File: “a”

File 1: “a”

2. Write File: “b”

File 1: “b”File 1: “b”

Stale reads: Once the server gets updated, how does client 1 know that File 1
has been updated?

J. Bell GMU CS 475 Spring 2019

• Before any read(), ask server if file has changed
• If not, use cached version
• If so, get fresh data from server

• Bad news: floods the server with requests
• Anyway: this alone is not enough to make sure each read() sees the latest

write()
• How do we know when the write() gets committed? Would need to have

locking.

Cache Consistency Strawman

!27

J. Bell GMU CS 475 Spring 2019

• Implemented by most NFS clients
• Contract:

• if client A write()s a file, then close()s it,
• then client B open()s the file, and read()s it,
• client B’s reads will reflect client A’s writes

• Benefit: clients need only contact server during open() and close()—not on
every read() and write()

NFS Caching - Close-to-open

!28

J. Bell GMU CS 475 Spring 2019

NFS Caching - Close-to-open

!29

Client 1
cache

Server
File 1: “a”

Client 2
cache

2. Read File: “a”

File 1: “a”

4. Write File: “b”

File 1: “b”File 1: “b”

1. Open File 3. Open File

7. Close File

Client 3
cache

9. Read File: “b”
8. Open File

Client 4
cache

6. Read File: “a”
5. Open File

File 1: “a”File 1: “b”

Note: in practice, client caches periodically check server to see if still valid

J. Bell GMU CS 475 Spring 2019

NFS + Failures

!30

Client Server

open(“file”)

seek(fd, 10)
CRASH!

fd

Reboot!
read(fd)

Problem: read() depends on server remembering that client did seek()!

read from wrong position?

How to solve?

J. Bell GMU CS 475 Spring 2019

• NFS checks for updates periodically while a file is open
• Multiple clients calling read at the same moment could see different values
• If there are multiple writers at once, there are no guarantees for ordering

• Reader might see writes from both writers
• NFS is an “AP” system

NFS is Weakly Consistent

!31

J. Bell GMU CS 475 Spring 2019

• Data in memory but not disk lost
• So... what if client does seek() ; /* SERVER CRASH */; read()

• If server maintains file position, this will fail. Ditto for open(), read()
• Stateless protocol: requests specify exact state. read() -> read([position]).

no seek on server.

NFS + Server crash?

!32

J. Bell GMU CS 475 Spring 2019

NFS + Server Crash

!33

Client Server

open(“file”)

seek(fd, 10)
CRASH!

fd

Reboot!
read(fd, offset)

read is correct because
server doesn’t keep track of any

state

J. Bell GMU CS 475 Spring 2019

• Lost messages: what if we lose acknowledgement for delete(“foo”)
• And in the meantime, another client created foo a new file called foo?
• Solution: Operations are idempotent

• How can we ensure this? Unique IDs on files/directories. It’s not
delete(“foo”), it’s delete(1337f00f), where that ID won’t be reused.

NFS + Lost Messages?

!34

J. Bell GMU CS 475 Spring 2019

• Might lose data in client cache
• Doesn’t matter:

• If lose other people’s data, can always retrieve it again
• Local writes go to cache until close() is called and returns (which flushes to

server)
• If lose your own writes sooner, SOL

NFS + Client Crashes

!35

J. Bell GMU CS 475 Spring 2019

• You can choose -
• retry until things get through to the server
• return failure to client

• Most client apps can’t handle failure of close() call. NFS tries to be a
transparent distributed filesystem -- so how can a write to local disk fail? And
what do we do, anyway?

• Usual option: hang for a long time trying to contact server

NFS Failure Handling

!36

J. Bell GMU CS 475 Spring 2019

• Not everything is idempotent! Some stuff leaks through!

NFS Failure Handling

!37

Client Server

mkdir(“dir”)

mkdir(“dir”) OKOK

error: “dir” exists

J. Bell GMU CS 475 Spring 2019

• Does NFS support locks?
• Nope! How could it support locks and still be stateless?
• Fault-tolerant lock servers are really hard to implement (distributed

agreement strikes again!)

NFS + Locking

!38

J. Bell GMU CS 475 Spring 2019

• What prevents unauthorized users from issuing RPCs to an NFS server?
• What prevents unauthorized users from forging NFS replies to an NFS client?
• Nothing: IP-address based security only. Client A can access mount M.

That’s it!

NFS Security

!39

J. Bell GMU CS 475 Spring 2019

• Security: what if untrusted users can be root on client machines?
• Scalability: how many clients can share one server?

• Writes always go through to server
• Some writes are to “private,” unshared files that are deleted soon after

creation
• Can you run NFS on a large, complex network?

• Effects of latency? Packet loss? Bottlenecks?
• Important question: whose fault are these limitations? Are they intractable

(because of the very problem we are trying to solve)? Or are we just not
thinking hard enough?

NFS Limitations

!40

J. Bell GMU CS 475 Spring 2019

• What about handling hundreds of thousands of concurrent clients and
exabytes of data?

• We will discuss GFS, the Google File System next Weds in lecture 23 - it does
exactly this!

Other Approaches

!41

J. Bell GMU CS 475 Spring 2019

HW4 Discussion

!42

J. Bell GMU CS 475 Spring 2019

• Thanks to Luís Pina for assistance with these slides.
• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/
• You are free to:

• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes

were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

This work is licensed under a Creative Commons Attribution-
ShareAlike license

!43

http://creativecommons.org/licenses/by-sa/4.0/

