
ZooKeeper & Curator
CS 475, Spring 2019

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2019

GFS Architecture

!2

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

GFS Master

J. Bell GMU CS 475 Spring 2019

GFS Metadata Example

!3

Chunk ID Filename Part of file Master
Chunk Server

Other Chunk
Servers

1 /foo/bar 1 of 1 A, valid for 1
more minute B, C

2 /another/file 1 of 2 B, valid for 1
more minute A, C

3 /another/file 2 of 2 D, valid for 1
more minute C, E

Note - can get very good parallelism by splitting chunks of the same file across different chunk servers

J. Bell GMU CS 475 Spring 2019

GFS - Reads

!4

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

GFS MasterClient

Where is file f?

List of chunks and their locations

Reads chunks

J. Bell GMU CS 475 Spring 2019

• Reminder - Project is out!
• Fault-tolerant, sequentially consistent replicated key value store
• Start thinking of groups (1 to 3 students per group)

• Today:
• Wrap up MapReduce
• ZooKeeper - what does it give us and how do we use it?

Today

!5

J. Bell GMU CS 475 Spring 2019

MapReduce: Divide & Conquer

!6

Combine

Result

r1 r2 r3 r4 r5

worker worker worker worker worker

w1 w2 w3 w4 w5

Partition

Big Data (lots of work)

J. Bell GMU CS 475 Spring 2019

• Each worker node is also a GFS chunk server!

MapReduce: Implementation

!7

J. Bell GMU CS 475 Spring 2019

• One master, many workers
• Input data split into M map tasks (typically 64MB ea)
• R reduce tasks
• Tasks assigned to works dynamically; stateless and idempotent -> easy fault

tolerance for workers
• Typical numbers:
• 200,000 map tasks, 4,000 reduce tasks across 2,000 workers

MapReduce: Scheduling

!8

J. Bell GMU CS 475 Spring 2019

• Master assigns map task to a free worker
• Prefer "close-by" workers for each task (based on data locality)
• Follower reads task input, produces intermediate output, stores locally (K/V

pairs)
• Master assigns reduce task to a free worker

• Reads intermediate K/V pairs from map workers
• Reduce worker sorts and applies some reduce operation to get the output

MapReduce: Scheduling

!9

J. Bell GMU CS 475 Spring 2019

• Ideally, fine granularity tasks (more tasks than machines)
• On worker-failure:

• Re-execute completed and in-progress map tasks
• Re-executes in-progress reduce tasks
• Commit completion to master

• On master-failure:
• Recover state (master checkpoints in a primary-backup mechanism)

Fault tolerance via re-execution

!10

J. Bell GMU CS 475 Spring 2019

• Originally presented by Google in 2003
• Widely used today (Hadoop is an open source implementation)
• Many systems designed to have easier programming models that compile

into MapReduce code (Pig, Hive)

MapReduce in Practice

!11

J. Bell GMU CS 475 Spring 2019

Hadoop: HDFS

!12

HDFS
HDFS NameNode

HDFS DataNode HDFS DataNode

J. Bell GMU CS 475 Spring 2019

• Files are split into blocks (128MB)
• Each block is replicated (default 3 block servers)
• If a host crashes, all blocks are re-replicated somewhere else
• If a host is added, blocks are rebalanced
• Can get awesome locality by pushing the map tasks to the nodes with the

blocks (just like MapReduce)

HDFS (GFS Review)

!13

J. Bell GMU CS 475 Spring 2019

Leader/follower distributed model

!14

Leader

Follower Follower Follower Follower

J. Bell GMU CS 475 Spring 2019

• Leader is single point of failure!
• If leader fails, no work is assigned
• Need to select a new leader

Leader/follower distributed model

!15

Leader

Follower Follower Follower Follower

(Crashed)
Leader

J. Bell GMU CS 475 Spring 2019

• If a follower fails?
• Not as bad, but need to detect its failure
• Some tasks might need to get re-assigned elsewhere

Leader/follower distributed model

!16

Leader

Follower Follower Follower FollowerCrashed

J. Bell GMU CS 475 Spring 2019

• If a follower doesn't receive a task (network link failure)?
• Again, not as bad, but need to detect
• Will need to try to re-establish link (difference between "there is no work left to

do" and "I just didn't hear I needed to do something)

Leader/follower distributed model

!17

Leader

Follower Follower Follower Follower

X

J. Bell GMU CS 475 Spring 2019

• Semaphores
• Queues
• Transactions
• Locks
• Barriers

Coordination

!18

J. Bell GMU CS 475 Spring 2019

Strawman Fault Tolerant Leader/Follower System

!19

Leader

Follower Follower Follower Follower

Backup
Leader

How do we know to switch to the backup?
How do we know when followers have crashed, or

network has failed?

J. Bell GMU CS 475 Spring 2019

Fault Tolerant Leader/Follower System

!20

Leader

Follower Follower Follower Follower

Backup
Leader

Coordination
Service

Coordination service handles all of those tricky parts.
But can’t the coordination service fail?

J. Bell GMU CS 475 Spring 2019

• Leave it to the coordination service to be fault-tolerant
• Can solve our leader/follower coordination problem in 2 steps:

• 1 - Write a fault-tolerant distributed coordination service
• 2 - Use it

• Thankfully, (1) has been done for us!

Fault-Tolerant Distributed Coordination

!21

Coordination Service

Coordination server

Coordination server

Coordination server

J. Bell GMU CS 475 Spring 2019

Review: Partitions

!22

Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Network Partition!!!Prepared to commitPrepared to commitPrepared to commit

Timeout behavior: abortTimeout behavior:
Commit!

Commit Authorized

Committed Aborted Aborted Aborted

J. Bell GMU CS 475 Spring 2019

• Why can’t we make a protocol for consensus/agreement that can tolerate
both partitions and node failures?

• To tolerate a partition, you need to assume that eventually the partition will
heal, and the network will deliver the delayed packages

• But the messages might be delayed forever
• Hence, your protocol would not come to a result, until forever (it would not

have the liveness property)

Review: FLP - Intuition

!23

J. Bell GMU CS 475 Spring 2019

• Distributed coordination service from Yahoo! originally, now maintained as
Apache project, used widely (key component of Hadoop etc)

• Highly available, fault tolerant, performant
• Designed so that YOU don’t have to implement Paxos for:

• Maintaining group membership, distributed data structures, distributed
locks, distributed protocol state, etc

ZooKeeper

!24

J. Bell GMU CS 475 Spring 2019

• Liveness: if a majority of ZooKeeper servers are active and communicating
the service will be available

• Atomic updates: A write is either entirely successful, or entirely failed
• Durability: if the ZooKeeper service responds successfully to a change

request, that change persists across any number of failures as long as a
quorum of servers is eventually able to recover

ZooKeeper - Guarantees

!25

J. Bell GMU CS 475 Spring 2019

• Configuration management (which servers are doing what role?)
• Synchronization primitives
• Anti-use cases:

• Storing large amounts of data
• Sharing messages and data that don’t require liveness/durability guarantees

Example use-cases

!26

J. Bell GMU CS 475 Spring 2019

Hadoop + ZooKeeper

!27

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode

ZKClient

NameNode

ZKClient

Primary Secondary

ZK Server ZK ServerZK Server

J. Bell GMU CS 475 Spring 2019

Hadoop + ZooKeeper

!28

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode

ZKClient

ZK Server ZK ServerZK Server

Primary Secondary

timeout
Notification that leader is

gone, secondary
becomes primary

disconnected

Primary

NameNode

ZKClient

Secondary

J. Bell GMU CS 475 Spring 2019

Hadoop + ZooKeeper

!29

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode

ZKClient

NameNode

ZKClient

Primary Secondary

ZK Server ZK ServerZK Server

Note - this is why ZK is helpful here:
we can have the ZK servers partitioned *too* and still

tolerate it the same way

J. Bell GMU CS 475 Spring 2019

ZooKeeper in Final Project

!30

Leader

Follower Follower Follower Follower

Coordination
Service

All writes go to leader

Who is the leader? Once we hit the leader, is it sure that it still is the leader?

Leader broadcasts read-invalidates to clients
Who is still alive?

Reads processed on each client
If don’t have data cached, contact leader - who is leader?

J. Bell GMU CS 475 Spring 2019

ZooKeeper in Final Project

!31

Leader

Follower Follower Follower Follower

Coordination
Service

All writes go to leader

Who is the leader? Once we hit the leader, is it sure that it still is the leader?

Leader broadcasts read-invalidates to clients
Who is still alive?

Reads processed on each client
If don’t have data cached, contact leader - who is leader?

PUT x=5

x=5

x=5

GET x

x=5

PUT x=7

Invalidate XInvalidate X

x=7

x=7

Failures can happen
anywhere, anytime!

J. Bell GMU CS 475 Spring 2019

ZooKeeper - Overview

!32

Client App ZKClient

Leader

Client App ZKClient

Client App ZKClient

Client App ZKClient

Follower

Follower

ZooKeeper EnsembleEach client maintains a session
with a single ZK server

J. Bell GMU CS 475 Spring 2019

• Each client maintains a session with a single ZK server
• Sessions are valid for some time window
• If client discovers its disconnected from ZK server, attempts to reconnect to a

different server before session expires

ZooKeeper - Sessions

!33

J. Bell GMU CS 475 Spring 2019

ZooKeeper - Overview

!34

Client App ZKClient

Leader

Client App ZKClient

Client App ZKClient

Client App ZKClient

Follower

Follower

ZooKeeper Ensembleread x

x=10

Reads processed locally

J. Bell GMU CS 475 Spring 2019

ZooKeeper - Overview

!35

Client App ZKClient

Leader

Client App ZKClient

Client App ZKClient

Client App ZKClient

Follower

Follower

ZooKeeper Ensemblewrite x=11

OK

Leader coordinates writes, waits for a
quorum of servers to ack

x=11x=11x=11

OK

OK

J. Bell GMU CS 475 Spring 2019

• Provides a hierarchical namespace
• Each node is called a znode
• ZooKeeper provides an API to manipulate these nodes

ZooKeeper - Data Model

!36

/

/app2/app1

/app1/z2/app1/z1

J. Bell GMU CS 475 Spring 2019

• In-memory data
• NOT for storing general data - just metadata (they are replicated and

generally stored in memory)
• Map to some client abstraction, for instance - locks
• Znodes maintain counters and timestamps as metadata

ZooKeeper - ZNodes

!37

J. Bell GMU CS 475 Spring 2019

• Regular znodes
• Can have children znodes
• Created and deleted by clients explicitly through API

• Ephemeral znodes
• Cannot have children
• Created by clients explicitly
• Deleted by clients OR removed automatically when client session that

created them disconnects

ZooKeeper - Znode Types

!38

J. Bell GMU CS 475 Spring 2019

• Clients track changes to znodes by registering a watch
• Create(path, data, flags)  

Delete(path, version)  
Exists(path, watch) 
getData(path, watch)  
setData(path, data, version)  
getChildren(path, watch)  
Sync(path)

ZooKeeper - API

!39

J. Bell GMU CS 475 Spring 2019

ZooKeeper - Consistency

!40

Client App ZKClient

Leader

Client App ZKClient

Client App ZKClient

Client App ZKClient

Follower

Follower

ZooKeeper Ensemblewrite x=11

OK

There is a time window before the
follower realizes its disconnected in

which it can have stale reads!

x=11x=11x=11

OK

read x

x=10

Disconnected

J. Bell GMU CS 475 Spring 2019

ZooKeeper - Consistency

!41

Client App ZKClient

Leader

Client App ZKClient

Client App ZKClient

Client App ZKClient

Follower

Follower

ZooKeeper Ensemblewrite x=11

OK

sync() command forces ZK to make
sure it is up-to-date

x=11x=11x=11

OK

sync
read x

Disconnectedsync
read x

J. Bell GMU CS 475 Spring 2019

• Sequential consistency of writes
• All updates are applied in the order they are sent, linearized into a total order by the

leader
• Atomicity of writes

• Updates either succeed or fail
• Reliability

• Once a write has been applied, it will persist until its overwritten, as long as a majority
of servers don’t crash

• Timeliness
• Clients are guaranteed to be up-to-date for reads within a time bound - after which

you either see newest data or are disconnected

ZooKeeper - Consistency

!42

J. Bell GMU CS 475 Spring 2019

• To acquire a lock called foo
• Try to create an ephemeral znode called /locks/foo
• If you succeeded:

• You have the lock
• If you failed:

• Set a watch on that node. When you are notified that the node is deleted, try
to create it again.

• Note - no issue with consistency, since there is no read (just an atomic write)

ZooKeeper - Lock Example

!43

J. Bell GMU CS 475 Spring 2019

• Why figure out how to re-implement this low level stuff (like locks)?
• Recipes: https://zookeeper.apache.org/doc/r3.3.6/recipes.html

• And in Java: http://curator.apache.org
• Examples:

• Locks
• Group Membership

ZooKeeper - Recipes

!44

https://zookeeper.apache.org/doc/r3.3.6/recipes.html
http://curator.apache.org

J. Bell GMU CS 475 Spring 2019

• How many ZooKeepers do you want?
• An odd number
• 3-7 is typical
• Too many and you pay a LOT for coordination

How Many ZooKeepers?

!45

J. Bell GMU CS 475 Spring 2019

• Just using ZooKeeper does not solve failures
• Apps using ZooKeeper need to be aware of the potential failures that can

occur, and act appropriately
• ZK client will guarantee consistency if it is connected to the server cluster

Failure Handling in ZK

!46

J. Bell GMU CS 475 Spring 2019

Failure Handling in ZK

!47

Client

ZK 1

ZK 2

ZK 3

2

1

3

Create event

ZK2 has network
problem

Client reconnects
to ZK3

Reissue create event to zk3
4

J. Bell GMU CS 475 Spring 2019

• If in the middle of an operation, client receives a ConnectionLossException
• Also, client receives a disconnected message
• Clients can’t tell whether or not the operation was completed though -

perhaps it was completed before the failure
• Clients that are disconnected can not receive any notifications from ZK

Failure Handling in ZK

!48

J. Bell GMU CS 475 Spring 2019

Dangers of ignorance

!49

Client 1

ZK

Client 2

Disconnected

Notification that /
leader is dead

create /leader

Client 2 is leader

create /leader
Reconnects, discovers no

longer leader

J. Bell GMU CS 475 Spring 2019

• Each client needs to be aware of whether or not its connected: when
disconnected, can not assume that it is still included in any way in operations

• By default, ZK client will NOT close the client session because it's
disconnected!

• Assumption that eventually things will reconnect
• Up to you to decide to close it or not

Dangers of ignorance

!50

J. Bell GMU CS 475 Spring 2019

• What should we do when we reconnect?
• Re-issue outstanding requests?

• Can't assume that outstanding requests didn't succeed
• Example: create /leader (succeed but disconnect), re-issue create /leader

and fail to create it because you already did it!
• Need to check what has changed with the world since we were last

connected

ZK: Handling Reconnection

!51

J. Bell GMU CS 475 Spring 2019

• Thanks to Luís Pina for assistance with these slides.
• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/
• You are free to:

• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes

were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

This work is licensed under a Creative Commons Attribution-
ShareAlike license

!52

http://creativecommons.org/licenses/by-sa/4.0/

