
Peer to Peer
CS 475, Spring 2019

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2019

• How do we find data?
• Every answer so far has required some sort of central server

• DNS lets us resolve names, going through the root servers
• GFS lets us find chunks that match to files, but need to go through master

server
• Why not use the central server to find data?

Review: Locating Data

!2

J. Bell GMU CS 475 Spring 2019

• Central server is:
• Point of failure
• Performance bottleneck
• Requires bootstrapping

Review: Why not use a central server to find data?

!3

ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer

GFS Master

J. Bell GMU CS 475 Spring 2019

Review: Strawman: Sharding (Partitioning by Key)

!4

Students [A…
N]

Students [A…
N]

Students [A…
N]

Students [O…
Z]

Students [O…
Z]

Students [O…
Z]

J. Bell GMU CS 475 Spring 2019

• The last one mapped every input to a different hash
• Doesn't have to, could be collisions

Review: Hashing

!5

Leo McGarry
Josh Lyman

Sam Seaborn

Toby Ziegler

Inputs

Hash
Function

0
1
2
3
4
5
6
7

Hash

J. Bell GMU CS 475 Spring 2019

• Construction:
• Assign each of C hash buckets to random points on mod 2n circle, where

hash key size = n
• Map object to pseudo-random position on circle
• Hash of object is the closest clockwise bucket

Review: Consistent Hashing

!6

0

4

8

12

Example: hash key size is 16

Each is a value of hash % 16

Each is a bucket

Example: bucket with key 9?

9

J. Bell GMU CS 475 Spring 2019

Review: CDN: How to find content?

!7

Master server directs all requests to
appropriate cache server

Big cluster of cache servers

Problem: Master becomes a huge bottleneck
Millions of requests, each request needs to be processed incredibly fast

J. Bell GMU CS 475 Spring 2019

Review: CDN: Finding Content

!8

1 2

7 8

3 4

9 10

5 6

11 12

http://www.jonbell.net/gmu-cs-475-spring-2018/homework-3/Consistent hash()=8

J. Bell GMU CS 475 Spring 2019

• This week: How do we get rid of the “master” server that keeps track of
metadata?

• Today:
• Pure peer-to-peer systems
• Begin discussion of Byzantine failures (continue next class)

• Reminder - Project is out!
• Fault-tolerant, sequentially consistent replicated key value store
• Can do in a group (1 to 3 students per group)

Today

!9

J. Bell GMU CS 475 Spring 2019

• Spreads network/cache costs across users instead of provider
• No server might mean:

• Easier to deploy
• Less chance of overload
• Single failure won’t take down the system
• Harder to attack

Why P2P?

!10

J. Bell GMU CS 475 Spring 2019

• Hard to find data items over millions of users
• Computers might not be as reliable as a managed server
• Less secure (?)

Why not P2P?

!11

J. Bell GMU CS 475 Spring 2019

• Goal: IF there must be a master, all that it knows is the address of a few
clients using the system

• Otherwise, everyone talks to each other, figures it out
• Replicate files, store them on clients, let clients find files from each other
• Challenges:

• Where to find data?
• What to do when clients come and go?

P2P

!12

J. Bell GMU CS 475 Spring 2019

• Break it down into four operations:
• Join the network and begin participating
• Publish a file to the network, letting others know you have it
• Search for a file that you want
• Fetch a file once it is found

P2P

!13

J. Bell GMU CS 475 Spring 2019

• Single master (centralized DB) stores metadata and client status
• Join: Client contacts master
• Publish: Client reports list of files to master
• Search: Query the server, find who has the file you want
• Fetch: Get directly from that peer client

Napster

!14

J. Bell GMU CS 475 Spring 2019

Napster

!15

Napster
Master

Hi, I signed on, I
have files f1, f2, f3 Who has f1?

client 1 client 2

client 1 doesCan I have f1?

Here is f1

Doesn’t everything just look like GFS, even things that predated it? :)

J. Bell GMU CS 475 Spring 2019

• The good:
• Simple
• Finding a file is really fast, regardless of how many clients there are - master

has it all
• The bad:

• Server becomes a single point of failure
• Server does a lot of processing
• Server having all of metadata implies significant legal liabilities

Napster

!16

J. Bell GMU CS 475 Spring 2019

• Join: Client contacts a few other clients to find “neighbors”
• Requires some initial mechanism to bootstrap

• Publish: N/A
• Search: Client asks neighbors for file, who ask their neighbors for file, who

asks their neighbors out to some depth
• Fetch: Clients directly communicate with each other

Gnutella 1.0

!17

J. Bell GMU CS 475 Spring 2019

Gnutella 1.0

!18

Can I have f1?
where
is f1?

where
is f1?
where
is f1?

client 1

client 2 client 3

client 4

client 5

c2 has
f1

J. Bell GMU CS 475 Spring 2019

• This is called "flooding"
• Cool:

• Fully decentralized
• Cost of search is distributed - no single node has to search through all of

the data
• Bad:

• Search requires contacting many nodes!
• Who can know when your search is done?
• What if nodes leave while you are searching?

Gnutella

!19

J. Bell GMU CS 475 Spring 2019

• Goal:
• Get large files out to as many users as possible, quickly

• Usages:
• Static bulk content (Big software updates, videos, etc)

• User model is cooperative
• While downloading a large file, also sharing the parts that you have
• After you get the file, keep sharing for a while too

• Approach relies on a “tracker” per file

BitTorrent

!20

J. Bell GMU CS 475 Spring 2019

• "Swarming"
• Join: Contact master "tracker," get list of peers
• Publish: Run a tracker server
• Search: Out-of-band (e.g. google)
• Fetch: Download chunks of files from peers

BitTorrent

!21

J. Bell GMU CS 475 Spring 2019

• Focus on less files, each of which is larger
• Files are broken into chunks -> can get different pieces of a file from different

clients
• Anti-freeloading mechanisms - if you don't share, you don't get to play!

• Since a big file is many chunks, once you get a chunk you can immediately
share it with others

• Trackers are still single-points of failure, but assumption is 1 tracker per file

BitTorrent vs Napster

!22

J. Bell GMU CS 475 Spring 2019

BitTorrent

!23

Tracker

Client

Client

Client

Client
Client

Client

J. Bell GMU CS 475 Spring 2019

• "Tit-for-tat" sharing strategy
• A is getting data from B, C, D

• A will let the fastest of those get data from A
• A will be optimistic though, and let nodes who haven't shared anything yet

have some data so that they can have a chance to share

BitTorrent

!24

J. Bell GMU CS 475 Spring 2019

• Goal:
• Guarantee that a file is always found within some bounded and reasonable

number of steps
• Abstraction:

• Create a lookup table, mapping from file to node that has that file (much like
Napster)

• BUT distribute this lookup table amongst the nodes participating (no single
master)

DHT (Distributed Hash Table)

!25

J. Bell GMU CS 475 Spring 2019

• Join: Contact some other node to bootstrap: integrate yourself into the DHT,
get a node ID and list of participating nodes

• Publish: Tell "mostly the correct" node that you have a file
• Search: Query for a file, asking first a "mostly correct" node
• Fetch: Contact node that has it directly
• How do we know where to route? Consistent hashing!

DHT

!26

J. Bell GMU CS 475 Spring 2019

Reminder: Consistent Hashing

!27

0

4

8

12

Example: hash key size is 16

Each is a value of hash % 16

Each is a bucket

Example: bucket with key 9?

9

J. Bell GMU CS 475 Spring 2019

• Pros:
• Guarantees that if the data is in the network, you'll find it in log(n) time

(compare to Gnutella - pseudo-random search)
• Good for caching, infrequently written data

• Cons:
• Can really only match on exact keys
• The node join/leave story is really bad - if we are distributed across the

internet, a node leaving/joining might involve moving hundreds of GBs
around

DHT

!28

J. Bell GMU CS 475 Spring 2019

• Use a DHT instead of a tracker for BitTorrent!
• Bootstrap: find a DHT peer
• Application: As you acquire files or look for files, add those facts into the DHT

DHT Applications

!29

J. Bell GMU CS 475 Spring 2019

Is our system well behaved?

!30

Crash-fail

Partitions

Byzantine

What we’ve done so far

Start talking about for P2P systems

J. Bell GMU CS 475 Spring 2019

Byzantine Failures in P2P

!31

May I have this totally legal, not copyrighted video please?

Sure, here it is!

J. Bell GMU CS 475 Spring 2019

• Our expectation so far: Fail-stop
• If a system stops working, it’s failed

• Maybe was network
• Maybe was computer
• Hard enough already to tell the difference between temporary (partition) and

persistent (node crash)
• What if a node fails but does not stop responding?

Detecting Failures

!32

J. Bell GMU CS 475 Spring 2019

• In systems with tracker (e.g. BitTorrent, Napster), trust the tracker to tell you
the hash of the file (including at the chunk granularity for bit torrent)

• What do you do if you don’t trust the tracker (or there isn’t one)?
• This is the general problem of byzantine faults

P2P and Byzantine Faults

!33

J. Bell GMU CS 475 Spring 2019

Byzantine Faults

!34

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

Set A=5

“OK!”

J. Bell GMU CS 475 Spring 2019

• Many cases in aviation, e.g. 777 fly-by-wire control system
• Pilot gives input to flight computer
• THREE different flight computers

• AMD, Motorola, Intel
• Each in a different physical location, connected to different electrical circuits,

built by different manufacturers
• Different components vote on the current state of the world and what to do

next
• Tolerates all kinds of failures

Byzantine Faults in Practice

!35

J. Bell GMU CS 475 Spring 2019

• Hardware designers implemented redundant flight controls to determine if
plane was pointing its nose too far up

• Pilots cross-check instruments to double check that the failure of a single
instrument doesn’t crash the plane

• Because of hardware design, plane needs an always-on autopilot system
(“MCAS”), specifically designed to keep the nose of the plane from pointing
up too far

Byzantine Faults in Practice 737-MAX Edition

!36

J. Bell GMU CS 475 Spring 2019

Byzantine Faults in Practice 737-MAX Edition

!37

Illustration: Norebbo.com

J. Bell GMU CS 475 Spring 2019

• MCAS, the thing that can automatically point the plane down does not
implement any redundancy

• Result: if the single probe used by the MCAS system gave an invalid result,
the plane would point straight down to the ground and crash

• Irony: Boeing prided itself on not relying on software controls, and in having
high degrees of mechanical redundancy (in contrast to Airbus)

• Nice article: https://spectrum.ieee.org/aerospace/aviation/how-the-
boeing-737-max-disaster-looks-to-a-software-developer.amp.html

Byzantine Faults in Practice 737-MAX Edition

!38

https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer.amp.html
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer.amp.html
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer.amp.html

J. Bell GMU CS 475 Spring 2019

• Very large set of ways in which a system might misbehave
• Bugs (perhaps on a single node)
• Intentional malice (perhaps a single node)
• Conspiracies (multiple bad nodes)

Byzantine Failures

!39

J. Bell GMU CS 475 Spring 2019

• “We imagine that several divisions of the Byzantine army are camped outside
an enemy city, each division commanded by its own general. The generals
can communicate with one another only by messenger. After observing the
enemy, they must decide upon a common plan of action. However, some of
the generals may be traitors, trying to prevent the loyal generals from
reaching agreement” - Lamport, Shostak, and Pease, 1980-2

Byzantine General's Problem

!40

J. Bell GMU CS 475 Spring 2019

Byzantine Generals Problem

!41

D
on’t attack!

Attack!

Attack!

J. Bell GMU CS 475 Spring 2019

• We tend to think of byzantine faults in an adversarial model
• A node gets compromised, an attacker tries to break your protocol

• Adversary could:
• Control all faulty nodes
• Be aware of any cryptography keys
• Read all network messages
• Force messages to become delayed

• Also could handle bugs
• Assuming uncorrelated (independent) failures

• How do we detect byzantine faults?

Byzantine Fault Tolerance

!42

J. Bell GMU CS 475 Spring 2019

• Easier to reason about a single commander (general) sending his order to the
others

• “Byzantine Commander Problem”:
• 1 commanding general must send his order to n-1 lieutenants
• All loyal lieutenants obey the same order
• If the commanding general is loyal, every loyal lieutenant obeys the order he

sends
• Consider metaphor:

• General -> node proposing a new value
• Lieutenants -> participants in agreement process

Byzantine Generals: Reduction

!43

J. Bell GMU CS 475 Spring 2019

• N servers
• Client sends request to all
• Waits for all n to reply, only proceeds if all n agree

Byzantine Strawman 1

!44

J. Bell GMU CS 475 Spring 2019

• Problem: a single evil node can halt the system

Byzantine Strawman 1

!45

J. Bell GMU CS 475 Spring 2019

• 2f+1 servers, assume no more than f are faulty
• If client gets f+1 matching replies, then OK

Byzantine Strawman 2

!46

J. Bell GMU CS 475 Spring 2019

• Problem: can't wait for the last f replies (same as previous strawman)
• But what if the first f replies were from faulty replicas?

Byzantine Strawman 2

!47

J. Bell GMU CS 475 Spring 2019

• 3f+1 servers, of which at most f are faulty
• Clients wait for 2f+1 replies

• Take the majority vote from those 2f+1
• If f are still faulty, then we still have f+1 not-faulty!

Byzantine Strawman 3

!48

J. Bell GMU CS 475 Spring 2019

• Assumes conditions similar to if discussion were happening orally, by
pairwise conversations between commanders and lieutenants

• Assumptions:
• Every message is delivered exactly as it was sent
• Receiver knows who the sender is for every message
• Absence of a message can be detected (and there is some default

assumed value)

Byzantine Fault Tolerance ("Oral messages")

!49

J. Bell GMU CS 475 Spring 2019

• Each commander sends the proposed value to every lieutenant
• Each lieutenant accepts that value
• (But that isn’t really fault tolerant…)

Oral BFT Solution (No Traitors)

!50

J. Bell GMU CS 475 Spring 2019

• Our solution: OM(m,S) tolerates m traitors in a set of S participants
• Commander i sends his proposed value vi to every lieutenant j
• Each lieutenant j receives some value vj from the commander (note they

might receive different values if commander is traitor!)
• Each lieutenant has a conversation with each other lieutenant to confirm the

commander’s order, conducting OM(m-1,S-{i}), recursively

Oral BFT Solution (m traitors)

!51

J. Bell GMU CS 475 Spring 2019

• Example: assume commander i is loyal
• Each lieutenant receives the same value from the commander
• Loyal ones could just accept that value, does not matter what traitors do (and

hence, we are tolerant as long as a majority of commanders are loyal)
• BUT, maybe commander is not loyal
• Hence, assume commander is a traitor, and conduct a ballot to reach a

consensus on what message the commander sent
• But how do you know that the other LIEUTENANTS are loyal? They might lie

about what they heard from the commander
• Hence, recurse

Oral BFT Solution (m traitors)

!52

J. Bell GMU CS 475 Spring 2019

Oral BFT Example (n=4, m=1)

!53

Commander

Lieutenant 1 Lieutenant 2 Lieutenant 3

x
y z

zx

J. Bell GMU CS 475 Spring 2019

• At best, can tolerate m failures from 3m+1 participants
• Ensures you always have a majority of valid participants

• If the loyal lieutenants decide the general is a traitor, they need to have some
predefined behavior

• This is really expensive (communication)
• To tolerate m traitors among n participants, or OM(m), each of n-1 participants

will invoke this OM(m-1) times
• OM(m-1) will cause n-2 participants to call OM(m-2)
• Overall number of messages: O(nm)
• Example: tolerate 3 failures from 10 participants: 1,000 messages

Oral BFT

!54

J. Bell GMU CS 475 Spring 2019

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

This work is licensed under a Creative Commons Attribution-
ShareAlike license

!55

http://creativecommons.org/licenses/by-sa/4.0/

