
Byzantine Fault Tolerance
CS 475, Spring 2019

Concurrent & Distributed Systems

J. Bell GMU CS 475 Spring 2019

• Spreads network/cache costs across users instead of provider
• No server might mean:

• Easier to deploy
• Less chance of overload
• Single failure won’t take down the system
• Harder to attack

Review: Why P2P?

!2

J. Bell GMU CS 475 Spring 2019

• The good:
• Simple
• Finding a file is really fast, regardless of how many clients there are - master

has it all
• The bad:

• Server becomes a single point of failure
• Server does a lot of processing
• Server having all of metadata implies significant legal liabilities

Review: Napster

!3

J. Bell GMU CS 475 Spring 2019

• Gnutella’s search approach is called "flooding"
• Cool:

• Fully decentralized
• Cost of search is distributed - no single node has to search through all of

the data
• Bad:

• Search requires contacting many nodes!
• Who can know when your search is done?
• What if nodes leave while you are searching?

Review: Gnutella

!4

J. Bell GMU CS 475 Spring 2019

• Goal:
• Get large files out to as many users as possible, quickly

• Usages:
• Static bulk content (Big software updates, videos, etc)

• User model is cooperative
• While downloading a large file, also sharing the parts that you have
• After you get the file, keep sharing for a while too

• Approach relies on a “tracker” per file

Review: BitTorrent

!5

J. Bell GMU CS 475 Spring 2019

Is our system well behaved?

!6

Crash-fail

Partitions

Byzantine

What we’ve done so far

Start talking about for P2P systems

J. Bell GMU CS 475 Spring 2019

Byzantine Failures in P2P

!7

May I have this totally legal, not copyrighted video please?

Sure, here it is!

J. Bell GMU CS 475 Spring 2019

• Today:
• Byzantine failures
• Blockchain

• Reminder - Course evaluation on Wednesday
• Reminder - Project is out!

• Fault-tolerant, sequentially consistent replicated key value store
• Can do in a group (1 to 3 students per group)

Today

!8

J. Bell GMU CS 475 Spring 2019

Byzantine Faults

!9

A B A B

Set A=5

6 7 765

“OK”! Read A “6”!

Set A=5

“OK!”

J. Bell GMU CS 475 Spring 2019

• Very large set of ways in which a system might misbehave
• Bugs (perhaps on a single node)
• Intentional malice (perhaps a single node)
• Conspiracies (multiple bad nodes)

Byzantine Faults

!10

J. Bell GMU CS 475 Spring 2019

• Many cases in aviation, e.g. 777 fly-by-wire control system
• Pilot gives input to flight computer
• THREE different flight computers

• AMD, Motorola, Intel
• Each in a different physical location, connected to different electrical circuits,

built by different manufacturers
• Different components vote on the current state of the world and what to do

next
• Tolerates all kinds of failures

Byzantine Faults in Practice

!11

J. Bell GMU CS 475 Spring 2019

• Hardware designers implemented redundant flight controls to determine if
plane was pointing its nose too far up

• Pilots cross-check instruments to double check that the failure of a single
instrument doesn’t crash the plane

• Because of hardware design, plane needs an always-on autopilot system
(“MCAS”), specifically designed to keep the nose of the plane from pointing
up too far

Byzantine Faults in Practice 737-MAX Edition

!12

J. Bell GMU CS 475 Spring 2019

Byzantine Faults in Practice 737-MAX Edition

!13

Illustration: Norebbo.com

J. Bell GMU CS 475 Spring 2019

• MCAS, the thing that can automatically point the plane down does not
implement any redundancy

• Result: if the single probe used by the MCAS system gave an invalid result,
the plane would point straight down to the ground and crash

• Irony: Boeing prided itself on not relying on software controls, and in having
high degrees of mechanical redundancy (in contrast to Airbus)

• Nice article: https://spectrum.ieee.org/aerospace/aviation/how-the-
boeing-737-max-disaster-looks-to-a-software-developer.amp.html

Byzantine Faults in Practice 737-MAX Edition

!14

https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer.amp.html
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer.amp.html
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer.amp.html

J. Bell GMU CS 475 Spring 2019

• “We imagine that several divisions of the Byzantine army are camped outside
an enemy city, each division commanded by its own general. The generals
can communicate with one another only by messenger. After observing the
enemy, they must decide upon a common plan of action. However, some of
the generals may be traitors, trying to prevent the loyal generals from
reaching agreement” - Lamport, Shostak, and Pease, 1980-2

Byzantine General's Problem

!15

J. Bell GMU CS 475 Spring 2019

Byzantine Generals Problem

!16

D
on’t attack!

Attack!

Attack!

J. Bell GMU CS 475 Spring 2019

• We tend to think of byzantine faults in an adversarial model
• A node gets compromised, an attacker tries to break your protocol

• Adversary could:
• Control all faulty nodes
• Be aware of any cryptography keys
• Read all network messages
• Force messages to become delayed

• Also could handle bugs
• Assuming uncorrelated (independent) failures

• How do we detect byzantine faults?

Byzantine Fault Tolerance

!17

J. Bell GMU CS 475 Spring 2019

• Easier to reason about a single commander (general) sending his order to the
others

• “Byzantine Commander Problem”:
• 1 commanding general must send his order to n-1 lieutenants
• All loyal lieutenants obey the same order
• If the commanding general is loyal, every loyal lieutenant obeys the order he

sends
• Consider metaphor:

• General -> node proposing a new value
• Lieutenants -> participants in agreement process

Byzantine Generals: Reduction

!18

J. Bell GMU CS 475 Spring 2019

• N servers
• Client sends request to all
• Waits for all n to reply, only proceeds if all n agree

Byzantine Strawman 1

!19

J. Bell GMU CS 475 Spring 2019

• Problem: a single evil node can halt the system

Byzantine Strawman 1

!20

J. Bell GMU CS 475 Spring 2019

• 2f+1 servers, assume no more than f are faulty
• If client gets f+1 matching replies, then OK

Byzantine Strawman 2

!21

J. Bell GMU CS 475 Spring 2019

• Problem: can't wait for the last f replies (same as previous strawman)
• But what if the first f replies were from faulty replicas?

Byzantine Strawman 2

!22

J. Bell GMU CS 475 Spring 2019

• 3f+1 servers, of which at most f are faulty
• Clients wait for 2f+1 replies

• Take the majority vote from those 2f+1
• If f are still faulty, then we still have f+1 not-faulty!

Byzantine Strawman 3

!23

J. Bell GMU CS 475 Spring 2019

• Assumes conditions similar to if discussion were happening orally, by
pairwise conversations between commanders and lieutenants

• Assumptions:
• Every message is delivered exactly as it was sent
• Receiver knows who the sender is for every message
• Absence of a message can be detected (and there is some default

assumed value)

Byzantine Fault Tolerance ("Oral messages")

!24

J. Bell GMU CS 475 Spring 2019

• Each commander sends the proposed value to every lieutenant
• Each lieutenant accepts that value
• (But that isn’t really fault tolerant…)

Oral BFT Solution (No Traitors)

!25

J. Bell GMU CS 475 Spring 2019

• Our solution: OM(m,S) tolerates m traitors in a set of S participants
• Commander i sends his proposed value vi to every lieutenant j
• Each lieutenant j receives some value vj from the commander (note they

might receive different values if commander is traitor!)
• Each lieutenant has a conversation with each other lieutenant to confirm the

commander’s order, conducting OM(m-1,S-{i}), recursively

Oral BFT Solution (m traitors)

!26

J. Bell GMU CS 475 Spring 2019

• In the oral algorithm, a traitor can lie about the commander’s orders
• Signed BFT adds an additional assumption:

• Messages are signed; a loyal participant's signature can not be forged; alteration
of the messages contents can be detected

• Anyone can verify a signature
• Algorithm SM(m):
• General signs and sends its value to each lieutenant
• For every lieutenant i:

• If the order they receive has m distinct signature on it, then you are done
• If not, then sign the order, forward to participants who have not signed it

Signed BFT

!27

J. Bell GMU CS 475 Spring 2019

• Requires 2m+1 nodes to tolerate m byzantine faults
• Less messages than the oral approach
• Tricky to implement a system that holds all of the assumptions we set out:

• Every message sent is delivered correctly
• Receiver knows who the sender is
• Absence of a message can be detected
• Loyal general’s signature cannot be forged; any alteration of a signed

message can be detected; anyone can verify authenticity of a general’s
signature

Signed BFT

!28

J. Bell GMU CS 475 Spring 2019

• Are byzantine failures truly random? (do they occur independently)
• Does not protect against all kinds of attacks against your system

• E.g. steal sensitive data
• If anybody can join the network, then an adversary could overwhelm the

voting process
• Usually considered as one component of a broader threat model

BFT Disclaimers

!29

J. Bell GMU CS 475 Spring 2019

• What is being defended?
• What resources are important to defend?
• What malicious actors exist and what attacks might they employ?

• Who do we trust?
• What entities or parts of system can be considered secure and trusted
• Have to trust something!

Threat Models

!30

J. Bell GMU CS 475 Spring 2019

• Most systems are not byzantine fault tolerant
• In our best case scenario (the signed message BFT protocol), need 2m+1

nodes to tolerate m byzantine faults - expensive!
• Nonetheless - important to recognize what failures we do and do not tolerate
• We’ll spend the rest of the lecture discussing a very popular BFT protocol…

blockchain

Byzantine Faults: Summary

!31

J. Bell GMU CS 475 Spring 2019

• Goal: Build a system for electronic cash, but without having any trust (of
government, money holders, money changers)

• What’s good (or not) about cash?
• Portable
• Can not spend twice
• Can not repudiate after payment
• No need for trusted 3rd party to do a single transaction
• Doesn’t work online
• Easy to steal

Bitcoin

!32

J. Bell GMU CS 475 Spring 2019

• Works online
• Somewhat hard to steal (need some knowledge)
• Can repudiate
• Requires trusted 3rd party
• Tracks all of your purchases

What about credit cards (paypal, venmo, square)?

!33

J. Bell GMU CS 475 Spring 2019

• Works online
• Uses crypto-coins
• No central authority for issuing coins or tracking ownership of coins
• Its basis - blockchains - are a form of byzantine-fault-tolerant consensus!

Bitcoin

!34

J. Bell GMU CS 475 Spring 2019

• Cryptocurrencies are based on public-key encryption
• Encryption review: Using public key, can send message that can only be read

by holder of private key

Cryptocurrencies

!35

Public Key Private Key

Plain text
Message

Encrypted
Message

Plain text
Message

J. Bell GMU CS 475 Spring 2019

• Cryptocurrencies are based on public-key encryption
• Encryption review: Using private key, can send messages that can be verified

came from us (using our public key)

Cryptocurrencies

!36

Public KeyPrivate Key

Plain text
Message

Signed
Message

Plain text
Message

J. Bell GMU CS 475 Spring 2019

• If I own a bitcoin, then I have the private key that signed it; anyone can verify
that I own it

• Transfer some bitcoin (say, #10) from A->B
• A creates a record that has B's public key, plus the serial # of the coin that A

is transferring
• A signs it with their private key

Bitcoin

!37

J. Bell GMU CS 475 Spring 2019

Bitcoin: Example

!38

Bitcoin 10

B’s pub key

A’s signature

Bitcoin Transaction 1
Transfers coin 10 from A to B

Bitcoin Transaction 2
Transfers coin 10 from B to C

Bitcoin 10

C’s pub key

B’s signature

J. Bell GMU CS 475 Spring 2019

• Problem:
• Where do the serial numbers come from?
• How do we know that a coin is only spent once?

• Easy answer - use a bank/central party:
• Bank issues serial numbers
• Bank keeps track of who owns each coin; doesn't let you spend the same

coin more than once
• Problem:

• Want decentralized.

Bitcoin

!39

J. Bell GMU CS 475 Spring 2019

• Idea: make everyone that participates keep track of all records as a common log
• Each participant stores a replica of the log, broadcasts transactions to peers
• How do we keep the peers up to date though?

• Paxos?
• Requires everyone is trusted to not corrupt the log

• Byzantine fault tolerant paxos?
• Requires 2/3 trusted to not corrupt the log
• How do you move forward even if you find corruption?
• How easy is it to overwhelm the network with malicious colluding nodes?

Blockchains

!40

J. Bell GMU CS 475 Spring 2019

• Solution: make it hard for participants to take over the network; provide
rewards for participants so they will still participate

• Each participant stores the entire record of transactions as blocks
• Each block contains some number of transactions and the hash of the

previous block
• All participants follow a set of rules to determine if a new block is valid

Blockchains

!41

h0 h1 h2 h3 h4 h6 h7 h8 hn dn

J. Bell GMU CS 475 Spring 2019

• How do we limit participation?
• Require a “proof of work”
• For the network to accept a new block, it must meet the following

requirement:
• hash(block,nonce) < target
• target is picked a priori
• nonce is a random value that the client is trying to guess

Blockchains

!42

J. Bell GMU CS 475 Spring 2019

• Reminder: hashing
• Takes some arbitrarily long input, produces a fixed-length
• Same input gives same output
• Making a subtle change in input can result in unpredictable change of

output
• Proof of work:

• hash(block data, nonce) < target
• Requires brute force

Proof of work

!43

J. Bell GMU CS 475 Spring 2019

• Each node that is trying to make a new block is called a miner
• Participants who want to make a transaction need to do so with the help of a

miner, who will put it in a block
• Miners get paid to create blocks:

• Transaction fees (roughly ~$0.10)
• Reward for making a new block (currently 12.5 btc)

Proof of work

!44

J. Bell GMU CS 475 Spring 2019

Blockchain's view of consensus

!45

h1 h2 h3 h4Miner 1:

Miner 2: h1 h2 h3 h4

h51

h52

Miner 3: h1 h2 h3 h4 h52 h62

“Longest chain rule”
When is a block truly safe?

J. Bell GMU CS 475 Spring 2019

• Worst case: attacker has 99% of mining capacity
Attacks

!46

h1 h2 h3Miner 1:

With massive computation power, can rewrite history: nobody can prove which way it
was supposed to be

h11 h21 h31 h41Miner 2:

h11 h21 h31 h41Miner 3:

h11 h21 h31 h41Miner 4:

J. Bell GMU CS 475 Spring 2019

• Miners don't trust people submitting transactions
• If you accept an invalid transaction then try to include it in your block, block

is rejected
• Miners don't trust each other

• If you include invalid transactions: rejected
• Nobody trusts miners

• Requires expending effort to get a new block in

Blockchain & Trust

!47

J. Bell GMU CS 475 Spring 2019

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

This work is licensed under a Creative Commons Attribution-
ShareAlike license

!48

http://creativecommons.org/licenses/by-sa/4.0/

