
Networks
CS 475, Fall 2019

Concurrent & Distributed Systems

J. Bell GMU CS 475 Fall 2019

• In client/server model, latency is simply: time between client sending request and
receiving response

• What contributes to latency?
• Latency sending the message
• Latency processing the message
• Latency sending the response

• Adding pipelined components -> latency is cumulative

2

Latency

Camera
Image ServiceSends images

Processes images

Phase 1 Phase 210ns
5ns

5ns

10ns Total latency: 30ns

J. Bell GMU CS 475 Fall 2019

• Measure of the rate of useful work done for a given workload
• Example:

• Throughput is camera frames processed/second
• When adding multiple pipelined components -> throughput is the minimum value

3

Throughput

Camera
Image ServiceSends images

Processes images

Phase 1 Phase 2
10fps 29fps

1000 fps

1000 fps

Total
throughput:

10fps

J. Bell GMU CS 475 Fall 2019

• Introduce concurrency into our pipeline
• Each stage runs in its own thread (or many threads, perhaps)
• If a stage completes its task, it can start processing the next request right away

• E.g. our system will process multiple requests at the same time

4

Improving Throughput

Facebook.comRequest
Cache
Check

Send
response

Response
Build

friends list
Build

Suggestions
Build

Newsfeed

J. Bell GMU CS 475 Fall 2019

• Approach: use concurrency
• Limited by serial section

5

Reducing Latency without lots of $$$

Facebook.com

Request Cache
Check

Send
response

Response

Build
friends list

Build
Suggestions

Build
Newsfeed

Serve from
cache

Fast path

Slow path

J. Bell GMU CS 475 Fall 2019

• More sensible to keep a pool of long-lived threads
• Threads assigned short-lived tasks

– Runs the task
– Rejoins pool
– Waits for next assignment

6

Thread Pools

J. Bell GMU CS 475 Fall 2019

• Insulate programmer from platform
– Big machine, big pool
– And vice-versa

• Portable code
– Runs well on any platform
– No need to mix algorithm/platform concerns

7

Thread Pool = Abstraction

J. Bell GMU CS 475 Fall 2019 8

Multithreaded Fibonacci
class FibTask implements Callable<Integer> {

 static ExecutorService exec =
Executors.newCachedThreadPool();

 int arg;

 public FibTask(int n) {

 arg = n;

 }

 public Integer call() {

 if (arg > 2) {

 Future<Integer> left = exec.submit(new FibTask(arg-1));

 Future<Integer> right = exec.submit(new FibTask(arg-2));

 return left.get() + right.get();

 } else {

 return 1;

 }}}

Parallel calls

J. Bell GMU CS 475 Fall 2019 9

Multithreaded Fibonacci
class FibTask implements Callable<Integer> {

 static ExecutorService exec =
Executors.newCachedThreadPool();

 int arg;

 public FibTask(int n) {

 arg = n;

 }

 public Integer call() {

 if (arg > 2) {

 Future<Integer> left = exec.submit(new FibTask(arg-1));

 Future<Integer> right = exec.submit(new FibTask(arg-2));

 return left.get() + right.get();

 } else {

 return 1;

 }}}

Pick up & combine results

J. Bell GMU CS 475 Fall 2019 10

Fib Work
fib(4)

fib(3) fib(2)

fib(2)
fib(1) fib(1)

fib(1)

fib(1) fib(1)

J. Bell GMU CS 475 Fall 2019

• HW2 discussion
• Gentle introduction to distributed computation
• Computer networks - what do they mean for us?
• We won’t return to the CompleteableFuture material we didn’t get to last class
• Reminders:

• Midterm

11

Today

J. Bell GMU CS 475 Fall 2019

• Process + Thread -> one computer
• How can we abstract many computers working together?
• What does that even look like?

12

More Abstractions

J. Bell GMU CS 475 Fall 2019 13

Distributed Systems

Model:
Many servers talking through cloud

J. Bell GMU CS 475 Fall 2019 14

Distributed Systems

Model:
Servers and Clients talking through cloud

J. Bell GMU CS 475 Fall 2019 15

Distributed Systems

Model:
Many clients talking through cloud

J. Bell GMU CS 475 Fall 2019 16

Distributed Systems

Model:
Two clients talking through cloud

J. Bell GMU CS 475 Fall 2019

• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

17

Why expand to distributed systems?

J. Bell GMU CS 475 Fall 2019

• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

“the ability of a system, network, or
process, to handle a growing amount

of work in a capable manner or its
ability to be enlarged to

accommodate that growth.”

18

Distributed Systems Goals

J. Bell GMU CS 475 Fall 2019

• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

19

Distributed Systems Goals
“is characterized by the amount of

useful work accomplished by a
computer system compared to the

time and resources used.”

J. Bell GMU CS 475 Fall 2019

• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

20

Distributed Systems Goals
“The state of being latent; delay, a

period between the initiation of
something and the it becoming

visible.”

J. Bell GMU CS 475 Fall 2019

• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

21

Distributed Systems Goals
“the proportion of time a system is in

a functioning condition. If a user
cannot access the system, it is said

to be unavailable.”

Availability = uptime / (uptime + downtime).

Availability % Downtime/year
90% >1 month
99% < 4 days

99.9% < 9 hours
99.99% <1 hour
99.999% 5 minutes
99.9999% 31 seconds

Often measured in “nines”

J. Bell GMU CS 475 Fall 2019

• Scalability
• Performance
• Latency
• Availability
• Fault Tolerance

22

Distributed Systems Goals

“ability of a system to behave in a
well-defined manner once faults

occur”

What kind of faults?

Disks fail
Power supplies fail

Power goes out

Networking fails
Security breached

Datacenter goes offline

J. Bell GMU CS 475 Fall 2019

• Say there’s a 1% chance of having some hardware failure occur to a machine
(power supply burns out, hard disk crashes, etc)

• Now I have 10 machines
• Probability(at least one fails) = 1 - Probability(no machine fails) = 1-(1-.01)10 =

10%
• 100 machines -> 63%
• 200 machines -> 87%
• So obviously just adding more machines doesn’t solve fault tolerance

23

More machines, more problems

J. Bell GMU CS 475 Fall 2019

• PLUS, the network may be:
• Unreliable
• Insecure
• Slow
• Expensive
• Limited

24

More machines, more problems

J. Bell GMU CS 475 Fall 2019

• Number of nodes
• Distance between nodes

25

Constraints

J. Bell GMU CS 475 Fall 2019

• A network consists of communication links
• Networks have several “interesting” properties we will look at

• Latency
• Failure modes

• What is the abstraction?

26

Networks as Abstractions

Machine 1 Machine 2

J. Bell GMU CS 475 Fall 2019

• Stuff goes in, stuff goes out?
• Not a perfect abstraction, because:

• Speed of light (1 foot/nanosecond)
• Communication links exist in uncontrolled/hostile environments
• Communication links may be bandwidth limited (tough to reach even 100MB/sec)

• In contrast to a single computer, where:
• Distances are measured in mm, not feet
• Physical concerns can be addressed all at once
• Bandwidth is plentiful (easily GB/sec)

27

Networks as Abstractions

J. Bell GMU CS 475 Fall 2019

• With processes, we considered how one CPU could be shared between multiple
programs running at once

• With networks, communication links are probably shared even more widely

28

Networks are Shared

J. Bell GMU CS 475 Fall 2019

• With processes, we considered how one CPU could be shared between multiple
programs running at once

• With networks, communication links are probably shared even more widely

29

Networks are Shared

Everyone talks to everyone on their own link
Not scalable

Shared network links

J. Bell GMU CS 475 Fall 2019

• What do we send, what gets received?
• At the lowest level, we call what gets sent frames
• Each frame is limited in size

• Ethernet: max 1522 bytes
• Frame is packed with source/destination info into a packet
• Network knows what to do with packets to get them to their destination

30

Network as Abstractions

J. Bell GMU CS 475 Fall 2019 31

Networks as Abstractions
LAN2

protocol
software

client

LAN1
adapter

Host ALAN1

data(1)

Router

packet(3) frame

protocol
software

server

LAN2
adapter

Host B

PH: Internet packet header
FH: LAN frame header

packet(4) frame

packet(5) frame

packet(6) frame

packet(7) frame

packet(8) frame

packet(3) frame
packet(3) frame
packet(3) frameetc

J. Bell GMU CS 475 Fall 2019

• As these packets flow through a network and are routed, we might see delays
due to:

• Propagation (traveling across the link, speed of light, etc)
• Transmission delay (big packets take longer to transmit)
• Processing delay (once switch sees packet, might be slow to process)
• Queuing delay (link might be busy)

32

Packet Switching Delays

J. Bell GMU CS 475 Fall 2019

• Some packets could be delayed, others might never reach their target, due to:
• Buffers overflowing (e.g. on switch)

• Networks are usually considered best-effort
• Aka third-class mail
• We’ll try to get your packet there, but if it doesn’t, sorry.

• Solved by requiring recipient to send a confirmation message was received
• If no confirmation received, assume didn’t get sent

• What happens to duplicates?
• Each message includes a unique ID, can be discarded if duplicate received

33

Packet Loss

J. Bell GMU CS 475 Fall 2019 34

Resending Packets
A B

time

X overloaded

resend request,

send request,

receive response,

send request,

timer expires,

set new timer

receive response,

X

X

set timer

reset timer

set timer

reset timer

forwarder
discards
request
packet.

request 1

response 1

request 2

request 2ʼ

response 2ʼ

Fig © Saltzer & Kaashoek

J. Bell GMU CS 475 Fall 2019 35

Resending Packets
A B

X overloaded forwarder

send request,

duplicate arrives at B
B sends response 3ʼ

timer expires,
resend request,

Xreceive response,

set new timer

set timer

reset timer

discards response 3

request 3

request 3ʼ

response 3ʼ

Fig © Saltzer & Kaashoek

J. Bell GMU CS 475 Fall 2019 36

Resending Packets

Fig © Saltzer & Kaashoek

A B

packet containing responsetimer expires,
resend

send request,

duplicate arrives at B
B sends response 4ʼ

receive

response

receive
response,

reset timer
X

duplicate

gets delayed

set timer
request 4

response 4

request 4ʼ

response 4ʼ

J. Bell GMU CS 475 Fall 2019

• That ID is really important to put on the packets!
• Note: it works, but can result in lots of duplicate packets sent back and forth
• Also, note: no guarantee that packets are delivered in order!

37

Resending Packets

J. Bell GMU CS 475 Fall 2019

• Obviously, we don’t think or care about packets
• We think and care about sending data!
• We want abstractions, like RPC (Remote Procedure Calls)
• Abstractions (try to) hide the complexity of what’s below them
• Next class: all RPC

38

Networks as Abstractions

Client Server

addPerson(“Prof
Bell”,”ENGR

4422”);

Address Book
Server Stub

RPC Magic

addPerson(“Prof
Bell”,”ENGR

4422”);

Address Book
Client Stub

J. Bell GMU CS 475 Fall 2019

• The typical network abstraction model has 7 layers
• Take CS 455 if you want to know more about these

• We’ll think about 3 abstraction layers, and really focus on the top one

39

3 Layer Abstraction

Link layer Physical links: care about how to
deliver packets

Network layer Figures out where to send packets

End-to-End layer Handles packet loss, etc. Translates from application-data
to packets, implements a protocol

J. Bell GMU CS 475 Fall 2019

• Anything in the end-to-end layer is likely built on top of some lower level protocol
(more abstractions)

• TCP, or UDP
• Data integrity (checksumming)
• Ordering control
• Flow control 

 (not worrying about congestion)

40

Transport Protocols

TCP ✅UDP ✅
TCP ✅UDP ❎
TCP ✅UDP ❎

J. Bell GMU CS 475 Fall 2019

• From this lecture, you should have found out that networks:
• Can vary in

• Data rates
• Propagation, transmission, queuing and processing delays

• Traverse hostile environments and may corrupt data or stop working
• Even best-effort networks have:

• Variable delays, transmission rates, can discard packets, duplicate packets, have a
maximum packet length, can reorder packets

• Even if using TCP, this can still show up!
• Messages might still arrive late

41

Reminder: Leaky Abstractions

J. Bell GMU CS 475 Fall 2019

• Simplest way to build our end-to-end layer is using a socket, which gives us an
interface to TCP or UDP

• Socket looks just like reading/writing to a file (e.g. file descriptor in C,
InputStream in Java)

• Sockets are identified by:
• IP address - identifies the device on the network
• Port number - identifies the application on the device

42

Sockets as an Abstraction

J. Bell GMU CS 475 Fall 2019 43

Preview for Next Class
Process 1

Process 2

Hey, are you there?

Process 2

Process 1 can find out from OS for
sure what happened

Process 2 fails

Process 1 Process 2

Hey, are you there?

Computer 2 fails

Process 1 Process 2

Hey, are you there?

…well, I can still talk to these guys so I
guess internet is ok

Spoiler alert: You can not tell the difference
in a distributed system between a computer

failing and network being arbitrarily slow!

J. Bell GMU CS 475 Fall 2019

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes

were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

44

This work is licensed under a Creative Commons Attribution-
ShareAlike license

http://creativecommons.org/licenses/by-sa/4.0/

