
Transactions & Two Phase Commit
CS 475, Fall 2019

Concurrent & Distributed Systems

J. Bell GMU CS 475 Fall 2019

To help design our algorithms and systems, we tend to leverage abstractions and
models to make assumptions

2

Designing and Building Distributed Systems

St
re

ng
th

System model

Synchronous

Asynchronous

Failure Model

Crash-fail

Partitions

Byzantine

Consistency Model
Eventual

Sequential

Generally: Stronger assumptions -> worse performance
Weaker assumptions -> more complicated

Real Architectures

External
Cache

Web
Servers

App
Servers

Database
servers

Internet

Internal
Cache

Misc
Services

Clients

N-Tier Web
Architectures

J. Bell GMU CS 475 Fall 2019

• First discussion of fault tolerance, in the context of transactions
• Agreement and transactions in distributed systems

4

Today

J. Bell GMU CS 475 Fall 2019

boolean transferMoney(Person from, Person to, float
amount){
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 to.balance = to.balance + amount;
 return true;
 }
 return false;
}

5

Transactions

What can go wrong here?

J. Bell GMU CS 475 Fall 2019

boolean transferMoney(Person from, Person to, float amount){
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 to.balance = to.balance + amount;
 return true;
 }
 return false;
}

6

Transactions: Classic Example

What’s wrong here?
Need isolation (prevent overdrawing)

transferMoney(P1, P2, 100) transferMoney(P1, P2, 200)
P1.balance (200) >= 100 P1.balance (200) >= 200
P1.balance = 200 - 100 = 100
P2.balance = 200 + 100 = 300
return true; P1.balance = 100 - 200 = -100

P2.balance = 300 + 200 = 500
return true;

J. Bell GMU CS 475 Fall 2019

boolean transferMoney(Person from, Person to, float amount){
 synchronized(from){
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 to.balance = to.balance + amount;
 return true;
 }
 return false;
 }
}

7

Transactions: Classic Example

Adding a lock: prevents accounts from being overdrawn

transferMoney(P1, P2, 100) transferMoney(P1, P2, 200)
P1.balance (200) >= 100
P1.balance = 200 - 100 = 100
P2.balance = 200 + 100 = 300
return true;

P1.balance < 200
return false;

But: shouldn’t we lock on to also?

J. Bell GMU CS 475 Fall 2019

boolean transferMoney(Person from, Person to, float amount){
 synchronized(from){
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 to.balance = to.balance + amount;
 return true;
 }
 return false;
 }
}

8

Transactions: Classic Example

transferMoney(P1, P2, 100) transferMoney(P2, P1, 100)
P1.balance (200) >= 100 P2.balance (200) > = 100

P2.balance = 200 - 100 = 100
P1.balance = 200 - 100 = 100 P1.balance = 200 + 100 = 300
P2.balance = 200 + 100 = 300 return true;
return true;

Need to lock on both!

J. Bell GMU CS 475 Fall 2019

boolean transferMoney(Person from, Person to, float amount){
 synchronized(from, to){
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 to.balance = to.balance + amount;
 return true;
 }
 return false;
 }
}

9

Transactions: Classic Example

transferMoney(P1, P2, 100) transferMoney(P1, P2, 200)
P1.balance (200) >= 100
P1.balance = 200 - 100 = 100

P1.balance < 200
return false;

Problem: P1.balance was deducted P2.balance not
incremented! (“Atomicity violation”)

J. Bell GMU CS 475 Fall 2019

• How can we provide some consistency guarantees across operations
• Transaction: unit of work (grouping) of operations

• Begin transaction
• Do stuff
• Commit OR abort

• Why distributed transactions?
• Data might be huge, spread across multiple machines
• Scale performance up
• Replicate data to tolerate failures

10

Transactions

J. Bell GMU CS 475 Fall 2019

• Traditional properties: ACID
• Atomicity: transactions are “all or nothing”
• Consistency: Guarantee some basic properties of data; each transaction leaves

the database in a valid state
• Isolation: Each transaction runs as if it is the only one; there is some valid serial

ordering that represents what happens when transactions run concurrently
• Durability: Once committed, updates cannot be lost despite failures

11

Properties of Transactions

J. Bell GMU CS 475 Fall 2019

Concurrency control:
Consistency & Isolation

J. Bell GMU CS 475 Fall 2019

• Simple solution for isolation
• Phase 1: acquire locks (all that you might need)
• Phase 2: release locks

• You can’t get any more locks after you release any
• Typically: locks released when you say “commit” or “abort”

13

2-phase locking

J. Bell GMU CS 475 Fall 2019 14

NOT 2-phase locking

boolean transferMoney(Person from, Person to, float amount){
 from.lock();
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 from.unlock();
 to.lock();
 to.balance = to.balance + amount;
 to.unlock();
 return true;
 }
 else
 from.unlock();
 return false;
}

Invalid: other
transactions could read
an inconsistent system

state at this point!

J. Bell GMU CS 475 Fall 2019 15

2-phase locking

boolean transferMoney(Person from, Person to, float amount){
 from.lock();
 if(from.balance >= amount)
 {
 from.balance = from.balance - amount;
 to.lock();
 to.balance = to.balance + amount;
 to.unlock();
 from.unlock();
 return true;
 }
 else
 from.unlock();
 return false;
}

Might deadlock if one
transaction gives from
P1->P2, other P2->P1

J. Bell GMU CS 475 Fall 2019

• Ideal isolation semantics
• Slightly stronger than sequential consistency
• Definition: execution of a set of transactions is equivalent to some serial order

• Two executions are equivalent if they have the same effect on program state
and produce the same output

• Just like sequential consistency, but the outcome must be equivalent to an
ordering where nothing happens concurrently, no re-ordering of events
between multiple transactions.

16

Serializability

J. Bell GMU CS 475 Fall 2019

• Allows serializability to be considered at the level of transactions, which might
include multiple variables

• If a transaction T accesses variables A and B, and T’ accesses variables A and
B, then either:

17

2-Phase Locking Ensures Serializability of Transactions

T

Access A Access B

T’

Access A Access B

J. Bell GMU CS 475 Fall 2019

• Allows serializability to be considered at the level of transactions, which might
include multiple variables

• If a transaction T accesses variables A and B, and T’ accesses variables A and
B, then either:

18

2-Phase Locking Ensures Serializability of Transactions

T

Access A Access B

T’

Access A Access B

J. Bell GMU CS 475 Fall 2019

• Allows serializability to be considered at the level of transactions, which might
include multiple variables

• If a transaction T accesses variables A and B, and T’ accesses variables A and
B, then either:

19

2-Phase Locking Ensures Serializability of Transactions

T

Access A

Access B

T’

Access A

Access B

Individual variable accesses are sequentially consistent, but transactions are not
serializable!

J. Bell GMU CS 475 Fall 2019

• Proof by contradiction
• Is it possible for T -> T’ and T’ -> … -> T? (different order for A and B)
• What would have happened?

• 1. T releases lock of A
• 2. T’ acquires lock of A
• 3. T’ releases lock of B
• 4. T acquires lock of B

• Hence, 1->2, 3->4
• But, required by 2PL: 4->1, 2->3 (or vv)
• Putting this together would be: 4->1->2, 2->3->4 aka a contradiction

20

Proof of Serializability - 2PL

J. Bell GMU CS 475 Fall 2019 21

Transactions Might Effect Things You Don’t Lock

Transaction 1: Update employees, set salary = salary*1.1 Transaction 2: Hire Carol, Hire Mike

Employee Salary
Bob 100

Herbert 100

Larry 100

Jon 100

J. Bell GMU CS 475 Fall 2019 22

Transactions Might Effect Things You Don’t Lock

Transaction 1: Update employees, set salary = salary*1.1

Transaction 2: Hire Carol, Hire Mike

Employee Salary
Bob 100

Herbert 100

Larry 100

Jon 100

Can run concurrently: no overlapping locks!

J. Bell GMU CS 475 Fall 2019 23

Transactions Might Effect Things You Don’t Lock

Transaction 1: Update employees, set salary = salary*1.1

Transaction 2: Hire Carol, Hire Mike

Employee Salary
Bob 100

Herbert 100
Larry 100
Jon 100

Carol 100

Can run concurrently: no overlapping locks!

J. Bell GMU CS 475 Fall 2019 24

Transactions Might Effect Things You Don’t Lock

Transaction 1: Update employees, set salary = salary*1.1

Transaction 2: Hire Carol, Hire Mike

Employee Salary
Bob 110

Herbert 110
Larry 110
Jon 110

Carol 110

Can run concurrently: no overlapping locks!

J. Bell GMU CS 475 Fall 2019 25

Transactions Might Effect Things You Don’t Lock

Transaction 1: Update employees, set salary = salary*1.1

Transaction 2: Hire Carol, Hire Mike

Employee Salary
Bob 110

Herbert 110
Larry 110
Jon 110

Carol 110
Mike 100

Solution to prevent this: Transaction 1 must always
acquire some lock to prevent any other transaction

from touching the data!
Or: ignore this problem and accept the consequences

J. Bell GMU CS 475 Fall 2019

No half measures: How do we
ensure the entire transaction
happens, or none? (Atomicity,

Durability)
If the machine crashes? can’t commit?

J. Bell GMU CS 475 Fall 2019

• How do we recover transaction state if we crash?
• Goal:

• Committed transactions are not lost
• Non-committed transactions either continue where they were or aborted

• Plan:
• Consider local recovery
• Then distributed issues

27

Fault Recovery

J. Bell GMU CS 475 Fall 2019

• Maintain a complete log of all operations INDEPENDENT of the actual data they
apply to

• E.g. Transaction boundaries and updates
• Transaction operations considered provisional until commit is logged to disk

• Log is authoritative and permanent

28

Write-ahead logging

J. Bell GMU CS 475 Fall 2019

• System model: data stored in multiple locations, multiple servers participating in
a single transaction. One server pre-designated “coordinator”

• Failure model: messages can be delayed or lost, servers might crash, but have
persistent storage to recover from

29

Distributing Transactions

J. Bell GMU CS 475 Fall 2019

• Coordinator: Begins a transaction
• Assigns a unique transaction ID
• Responsible for commit + abort
• In principle, any client can be the coordinator, but all participants need to agree

on who is the coordinator
• Participants: everyone else who has the data used in the transaction

30

Distributed Transactions

J. Bell GMU CS 475 Fall 2019

• In distributed systems, we have multiple nodes that need to all agree that some
object has some state

• Examples:
• The value of a shared variable
• Who owns a lock
• Whether or not to commit a transaction

31

Agreement

J. Bell GMU CS 475 Fall 2019

• Most distributed systems problems can be reduced to this one:
• Despite being separate nodes (with potentially different views of their data and

the world)…
• All nodes that store the same object O must apply all updates to that object in

the same order (consistency)
• All nodes involved in a transaction must either commit or abort their part of the

transaction (atomicity)
• Easy?

• … but nodes can restart, die or be arbitrarily slow
• … and networks can be slow or unreliable too

32

Agreement Generally

J. Bell GMU CS 475 Fall 2019

• 2 kinds of properties, just like for mutual exclusion:
• Safety (correctness)

• All nodes agree on the same value (which was proposed by some node)
• Liveness (fault tolerance, availability)

• If less than N nodes crash, the rest should still be OK

33

Properties of Agreement

J. Bell GMU CS 475 Fall 2019 34

Distributed Transactions

Goliath
National

Bank
Duke & Duke

Partners

transferMoney(“from”: Barney@Goliath National,
“to”: Mortimer@ Duke&Duke, “amount”=$1)
Initially: Barney.balance= $10000, Mortimer.balance=$10000

transferMoney:
add(Mortimer,1)
add(Barney,-1)

auditRecords:
tmp1 = get(Mortimer)
tmp2 = get(Barney)
print tmp1, tmp2

What can we hope for if these two actions happen at once?

10,000 printed twice, or:
10,001 and 9,999

(Atomicity of the transfer)

J. Bell GMU CS 475 Fall 2019 35

Distributed Transactions

Goliath
National

Bank
Duke & Duke

Partners

transferMoney(“from”: Barney@Goliath National,
“to”: Mortimer@ Duke&Duke, “amount”=$1)
Initially: Barney.balance= $10000, Mortimer.balance=$10000

transferMoney:
add(Mortimer,1)
add(Barney,-1)

auditRecords:
tmp1 = get(Mortimer)
tmp2 = get(Barney)
print tmp1, tmp2

…But why is this hard? What can go wrong?

auditRecords is interleaved with transferMoney?

Server or network failure on either end

Mortimer or Barney’s account might not even exist

J. Bell GMU CS 475 Fall 2019

• We can easily solve our transfer problem by making this two transactions!
• Client tells the transaction system when to start/end each transaction
• System arranges transactions to ensure our ACID properties
• Today’s focus: how do we build that transaction system?

36

Distributed Transactions

Goliath
National

Bank
Duke & Duke

Partners

transferMoney:
begin_transaction()
add(Mortimer,1)
add(Barney,-1)
end_transaction()

auditRecords:
begin_transaction()
tmp1 = get(Mortimer)
tmp2 = get(Barney)
print tmp1, tmp2
end_transaction()

J. Bell GMU CS 475 Fall 2019

• Will focus much more on how to abort - because more can go wrong:
• Abort must undo any in-progress modifications
• Voluntary abort - some client validation fails (e.g. bank account doesn’t exist)
• Abort might come from failure (server or network crash)
• System might deadlock and need to abort

• Two big components, just like non-distributed transactions:
• Concurrency control (2 phase locking, just like non-distributed)
• Atomic commit

37

Distributed Transactions

J. Bell GMU CS 475 Fall 2019

• Separate the commit into two steps:
• 1: Voting

• Each participant prepares to commit and votes of whether or not it can commit
• 2: Committing

• Once voting succeeds, every participant commits or aborts
• Assume that participants and coordinator communicate over RPC

38

2-Phase Commit

J. Bell GMU CS 475 Fall 2019

• Coordinator asks each participant: can you commit for this transaction?
• Each participant prepares to commit BEFORE answering yes

• e.g. save transaction to disk for later recovery
• Can not abort after saying yes

• Outcome of transaction is unknown until the coordinator receives all votes and
says “do abort” or “do commit”

39

2PC: Voting

2PC Event Sequence
Coordinator

prepared

Participant

committed

done

Transaction state: Local state:
prepared

uncertain

committed

Can you commit?

Yes

OK, commit

OK I committed

2PC Example

Goliath
National

Bank
Duke & Duke

Partners

transferMoney(“from”: Barney@Goliath National,
“to”: Mortimer@ Duke&Duke, “amount”=$1)

Initially: Barney.balance= $10000, Mortimer.balance=$10000

Requirements:
1. Atomicity (transfer happens or doesn’t)
2. Concurrency control (serializability)

2PC Example
For simplicity, let’s assume transfer is:
int transfer(src, dst, amt) {
 transaction = begin();
 src.bal -= amt;
 dst.bal += amt;
 return transaction.commit();
}

2PC Example
Coordinator

(client or 3rd party)
Participant

Goliath National
Participant

Duke & Duke
transaction
.commit() prepare

prepare
respon

seGNB

responseD&D If we can commit, then lock
our customer, vote “yes”outcome

outcome
If everyone can commit, then

outcome == commit, else
abort

J. Bell GMU CS 475 Fall 2019

• Remember the two kinds of properties we want to get:
• Safety (correctness)

• All nodes agree on the same value (which was proposed by some node)
• Liveness (fault tolerance, availability)

• If less than N nodes crash, the rest should still be OK
• As presented so far, 2PC guarantees safety, because no participant can proceed

with the commit

44

2PC Correctness (Safety)

J. Bell GMU CS 475 Fall 2019

• How do we recover transaction state if we crash?
• Goal:

• Committed transactions are not lost
• Non-committed transactions either continue where they were or aborted

• First: lay out various failure modes and discuss intuitions for solutions
• Crashes for participant and coordinator; timeouts for same

• Then: formalize a policy for recovery in 2PC

45

Fault Recovery

Fault Recovery Example
Coordinator

(client or 3rd party)
Participant

Goliath National
Participant

Duke & Duke
transaction
.commit() prepare

prepare
respon

seGNB

responseD&D

outcome

outcome

“Yes”

“Yes” Crash :(

Example: Participant crashes after voting “yes” to commit

Solution: Participants must keep track of transaction status on persistent storage for recovery on reboot

Fault Recovery Example
Coordinator

(client or 3rd party)
Participant

Goliath National
Participant

Duke & Duke
transaction
.commit() prepare

prepare
respon

seGNB

responseD&D

“Yes”

“Yes”

Crash :(

Example: Coordinator crashes after receiving votes

Solution: Coordinator must keep track of transaction status on persistent storage for recovery on reboot

Fault Recovery Example
Coordinator

(client or 3rd party)
Participant

Goliath National
Participant

Duke & Duke
transaction
.commit() prepare

prepare
respon

seGNB

responseD&D
“Yes”

Example: Coordinator times out waiting for a response

Solution: Coordinator can default to “abort” on timeout

J. Bell GMU CS 475 Fall 2019

• What to log?
• State changes in protocol
• Participants: prepared; uncertain; committed/aborted
• Coordinator: prepared; committed/aborted; done
• These messages are idempotent - can be repeated

• Recovery depends on failure
• Crash + reboot + recover
• Timeout + recover

49

Recovery in 2PC

J. Bell GMU CS 475 Fall 2019

• Nodes can’t back out once commit is decided
• If coordinator crashes just AFTER deciding “commit”

• Must remember this decision, replay
• If participant crashes after saying “yes, commit”

• Must remember this decision, replay
• Hence, all nodes need to log their progress in the protocol

50

Crash + Reboot Recovery

2PC Example with logging
Coordinator

(client or 3rd party)
Participant

Goliath National
Participant

Duke & Duke
transaction
.commit() prepare

prepare
respon

seGNB

responseD&D If we can commit, then lock
our customer, vote “yes”outcome

outcome
If everyone can commit, then

outcome == commit, else
abort

Log!

Log!

Log!

Log!

J. Bell GMU CS 475 Fall 2019

• If coordinator finds no “commit” message on disk, abort
• If coordinator finds “commit” message, commit
• If participant finds no “yes, ok” message, abort
• If participant finds “yes, ok” message, then replay that message and continue

protocol

52

Recovery on Reboot

J. Bell GMU CS 475 Fall 2019

• Example:
• Coordinator times out waiting for Goliath National Bank’s response
• Bank times out waiting for coordinator’s outcome message

• Causes?
• Network
• Overloaded hosts
• Both are very realistic…

53

Timeouts in 2PC

J. Bell GMU CS 475 Fall 2019

• If coordinator times out waiting to hear from a bank
• Coordinator hasn’t sent any commit messages yet
• Can safely abort - send abort message
• Preserves correctness, sacrifices performance (maybe didn’t need to abort!)
• If either bank decided to commit, it’s fine - they will eventually abort

54

Coordinator Timeouts

J. Bell GMU CS 475 Fall 2019

• What if the bank doesn’t hear back from coordinator?
• If bank voted “no”, it’s OK to abort
• If bank voted “yes”

• It can’t decide to abort (maybe both banks voted “yes” and coordinator heard
this)

• It can’t decide to commit (maybe other bank voted yes)
• Does bank just wait for ever?

55

Handling Bank Timeouts

J. Bell GMU CS 475 Fall 2019

• Can resolve SOME timeout problems with guaranteed correctness in event bank
voted “yes” to commit

• Bank asks other bank for status (if it heard from coordinator)
• If other bank heard “commit” or “abort” then do that
• If other bank didn’t hear

• but other voted “no”: both banks abort
• but other voted “yes”: no decision possible!

56

Handling Bank Timeouts

J. Bell GMU CS 475 Fall 2019

• We can solve a lot (but not all of the cases) by having the participants talk to
each other

• But, if coordinator fails, there are cases where everyone stalls until it recovers
• Can the coordinator fail?… yes
• We’ll come back to this “discuss amongst yourselves” kind of transactions next

week

57

2PC Timeouts

J. Bell GMU CS 475 Fall 2019

• Guarantees safety, but not liveness - there are situations in which the protocol
can stall indefinitely

• Recovery requires considerable logging
• Relatively few messages required though, for each transaction (low latency)

58

2PC Summary

J. Bell GMU CS 475 Fall 2019

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes

were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

59

This work is licensed under a Creative Commons Attribution-
ShareAlike license

http://creativecommons.org/licenses/by-sa/4.0/

