
Transactions & Three Phase Commit
CS 475, Fall 2019

Concurrent & Distributed Systems

J. Bell GMU CS 475 Fall 2019

• Most distributed systems problems can be reduced to this one:
• Despite being separate nodes (with potentially different views of their data and

the world)…
• All nodes that store the same object O must apply all updates to that object in

the same order (consistency)
• All nodes involved in a transaction must either commit or abort their part of the

transaction (atomicity)
• Easy?

• … but nodes can restart, die or be arbitrarily slow
• … and networks can be slow or unreliable too

2

Agreement Generally

J. Bell GMU CS 475 Fall 2019

• 2 kinds of properties, just like for mutual exclusion:
• Safety (correctness)

• All nodes agree on the same value (which was proposed by some node)
• Liveness (fault tolerance, availability)

• If less than N nodes crash, the rest should still be OK

3

Properties of Agreement

J. Bell GMU CS 475 Fall 2019

• Separate the commit into two steps:
• 1: Voting

• Each participant prepares to commit and votes of whether or not it can commit
• 2: Committing

• Once voting succeeds, every participant commits or aborts
• Assume that participants and coordinator communicate over RPC

4

2-Phase Commit

2PC Event Sequence
Coordinator

prepared

Participant

committed

Transaction state: Local state:
prepared

uncertain

committed

Can you commit?

Yes

OK, commit

Fault Recovery Example
Coordinator

(client or 3rd party)
Participant

Goliath National
Participant

Duke & Duke
transaction
.commit() prepare

prepare
respon

seGNB

responseD&D

outcome

outcome

“Yes”

“Yes” Crash :(

Example: Participant crashes after voting “yes” to commit

Solution: Participants must keep track of transaction status on persistent storage for recovery on reboot

Fault Recovery Example
Coordinator

(client or 3rd party)
Participant

Goliath National
Participant

Duke & Duke
transaction
.commit() prepare

prepare
respon

seGNB

responseD&D

“Yes”

“Yes”

Crash :(

Example: Coordinator crashes after receiving votes

Solution: Coordinator must keep track of transaction status on persistent storage for recovery on reboot

J. Bell GMU CS 475 Fall 2019

• We can solve a lot (but not all of the cases) by having the participants talk to
each other

• But, if coordinator fails, there are cases where everyone stalls until it recovers
• Can the coordinator fail?… yes
• We’ll come back to this “discuss amongst yourselves” kind of transactions today!

8

2PC Timeouts

J. Bell GMU CS 475 Fall 2019

• More discussion of fault tolerance, in the context of transactions
• Agreement and transactions in distributed systems - 3PC
• Reminders:

• HW3 due next week!

9

Today

J. Bell GMU CS 475 Fall 2019

• Fundamental problem:
• Once coordinator says commit we can not go back
• That’s the property of transactions though!

• In what situations can we reach consensus if the coordinator fails?
• Let’s go through some examples again, this time using Socrative to poll your

answers

10

Digging Deeper into 2PC Failures

Go to socrative.com and select “Student Login” Room: CS475; ID is your G-Number

http://socrative.com

If they can talk to each other, we know we can commit (good)

Digging Deeper into 2PC
Failures

Coordinator

Participant A

Participant B

Participant C

Participant D

Voted yes

Voted yes

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

Heard back “commit”

X

Question 1

If they can talk to each other, we know that we can all abort (good)

Digging Deeper into 2PC
Failures

Coordinator

Participant A

Participant B

Participant C

Participant D

Voted no

Voted yes

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

Did not hear result

X

Question 2

If they can talk to each other, we do not know if we can commit/abort (who knows
what the coordinator will do?)

Digging Deeper into 2PC
Failures

Coordinator

Participant A

Participant B

Participant C

Participant D

Voted yes

Voted yes

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

Did not hear result

X

Question 3

If they can talk to each other, we do not know if we can commit/abort (who knows
that there was a vote no?)

Digging Deeper into 2PC
Failures

Coordinator

Participant A

Participant B

Participant C

Participant D

Voted no

Voted yes

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

Did not hear result

X
X

Question 4

If they can talk to each other, we do not know if we can commit/abort (do not
know what the coordinator heard/said)

Digging Deeper into 2PC
Failures

Coordinator

Participant A

Participant B

Participant C

Participant D

Voted yes

Voted yes

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

Heard back “commit”

X
X

Question 5

J. Bell GMU CS 475 Fall 2019

• Goal: Eliminate this class of failure from blocking liveness

16

3 Phase Commit

Coordinator

Participant A

Participant B

Participant C

Participant D

Voted yes

Voted yesX
X Heard back “commit”

Voted yes

Voted yes

Did not hear result

Did not hear result

Did not hear result

J. Bell GMU CS 475 Fall 2019

• Goal: Avoid blocking on node failure
• How?

• Think about how 2PC is better than 1PC
• 1PC means you can never change your mind or have a failure after

committing
• 2PC still means that you can’t have a failure after committing (committing is

irreversible)

17

3 Phase Commit

J. Bell GMU CS 475 Fall 2019

• 3PC idea:
• Split commit/abort into 2 sub-phases

• 1: Tell everyone the outcome
• 2: Agree on outcome

• Now: EVERY participant knows what the result will be before they irrevocably
commit!

18

3 Phase Commit

J. Bell GMU CS 475 Fall 2019 19

3PC Example

Coordinator Participants (A,B,C,D)

Soliciting
votes

prepare

respon
se

pre-commitCommit
authorized
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Timeout causes abortTimeout causes
abort

Timeout causes
abort

Timeout causes commit

3PC Exercise
Coordinator Participants (A,B,C,D)

Soliciting
votes

prepare

respon
se

pre-commitCommit
authorized
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Scenario:
1 Coordinator, 4 participants

No failures, all commit

Timeout causes abortTimeout causes
abort

Timeout causes
abort

Timeout causes commit

J. Bell GMU CS 475 Fall 2019

• Can B/C/D reach a safe decision…
• If any one of them has received preCommit?

• YES! Assume A is dead. When A comes back online, it
will recover, and talk to B/C/D to catch up.

• Consider equivalent to in 2PC where B/C/D received the
“commit” message and all voted yes

21

3PC Crash Handling

Participant B

Participant C

Participant D

CoordinatorX
Participant AX

J. Bell GMU CS 475 Fall 2019

• Can B/C/D reach a safe decision…
• If NONE of them has received preCommit?

• YES! It is safe to abort, because A can not have
committed (because it couldn’t commit until B/C/D
receive and acknowledge the pre-commit)

• This is the big strength of the extra phase over 2PC
• Summary: Any node can crash at any time, and we can

always safely abort or commit.

22

3PC Crash Handling

Participant B

Participant C

Participant D

CoordinatorX
Participant AX

3PC Exercise
Coordinator Participants (A,B,C,D)

Soliciting
votes

prepare

respon
se

pre-commitCommit
authorized
(if all yes)

OK

commit

OK

Done

Status: Uncertain

Status: Prepared to commit

Status: Committed

Scenario:
1 Coordinator, 4 participants

After pre-commit sent, coordinator and A fail

Timeout causes abortTimeout causes
abort

Timeout causes
abort

Timeout causes commit

J. Bell GMU CS 475 Fall 2019

• Safety (correctness)
• All nodes agree on the same value (which was proposed by some node)

• Liveness (fault tolerance, availability)
• If less than N nodes crash, the rest should still be OK

24

Properties of Agreement

J. Bell GMU CS 475 Fall 2019

• Reminder, that means:
• Liveness (availability)

• Yes! Always terminates based on timeouts
• Safety (correctness)

• Yes!*

25

Does 3PC guarantee agreement?

*Assuming that the only way things fail is by crashing

J. Bell GMU CS 475 Fall 2019 26

Safety in Crashes

Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Prepared to commitPrepared to commitPrepared to commit

Crashed: do not commit or abort. When recovers,
asks coordinator what to do

Timeout behavior:
abort! Commit Authorized

Aborted Aborted Aborted Aborted
X X X

J. Bell GMU CS 475 Fall 2019 27

Partitions

Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Network Partition!!!Prepared to commitPrepared to commitPrepared to commit

Timeout behavior: abortTimeout behavior:
Commit!

Commit Authorized

Committed Aborted Aborted Aborted

Implication: if networks can delay arbitrarily, 3PC does not guarantee safety!!!!

Timeout behavior: abort

J. Bell GMU CS 475 Fall 2019 28

Modeling our Systems

St
re

ng
th

System model

Synchronous

Asynchronous

Failure Model

Crash-fail

PartitionsPartitions

Generally: Stronger assumptions -> worse performance
Weaker assumptions -> more complicated

To help design our algorithms and systems, we tend to leverage
abstractions and models to make assumptions

Byzantine (we’ll come back to
this, but blockchains are here)

J. Bell GMU CS 475 Fall 2019

• Synchronous: There is a bound on how long a message takes to arrive
• Asynchronous: There is no bound on how long a message takes to arrive
• Key implication: what does a timeout mean?

• Synchronous: Something must have crashed
• Asynchronous: Network might just be slow

• Note: real networks are asynchronous

29

Synchronous vs Asynchronous Messages

J. Bell GMU CS 475 Fall 2019

• Crash-fail: Our system will be correct if the only failures we can ever see are a
node crashing

• Partition tolerant: Our system will be correct for crashing failures and for arbitrary
network delays

• NB: If the network is synchronous, we are partition-tolerant by default (no
partitions possible)

30

Failure Models: Crash-Fail vs Partition Tolerant

J. Bell GMU CS 475 Fall 2019

• 2PC
• Safety (always, for crash and partition failures)
• Liveness (if 1 node fails, we may block)

• 3PC
• Safety (assuming the only failure mode is crash, never partition)
• Liveness (can always proceed if 1 node fails)

• Can we have some hybrid/best of both worlds?

31

2PC vs 3PC

J. Bell GMU CS 475 Fall 2019

• Short answer: No.
• Fischer, Lynch & Paterson (FLP) Impossibility Result:

• Assume that nodes can only fail by crashing, network is reliable but can be
delayed arbitrarily

• Then, there can not be a deterministic algorithm for the consensus problem
subject to these failures

32

Can we fix it?

J. Bell GMU CS 475 Fall 2019

• Why can’t we make a protocol for consensus/agreement that can tolerate both
partitions and node failures?

• To tolerate a partition, you need to assume that eventually the partition will heal,
and the network will deliver the delayed packages

• But the messages might be delayed forever
• Hence, your protocol would not come to a result, until forever (it would not have

the liveness property)

33

FLP - Intuition

J. Bell GMU CS 475 Fall 2019 34

Partitions

Participant B Participant C Participant D

Coordinator

Participant A

Soliciting Votes
Prepared to commit

Uncertain Uncertain UncertainUncertain

Yes Yes Yes Yes

Network Partition!!!Prepared to commitPrepared to commitPrepared to commit

Timeout behavior: abortTimeout behavior:
Commit!

Commit Authorized

Committed Aborted Aborted Aborted

Insight: There is a “majority” partition here (B,C,D)
The “minority” know that they are not in the majority (A can only talk to Coordinator,

knows B, C, D might exist)

J. Bell GMU CS 475 Fall 2019

• Key idea: if you always have an odd number of nodes…
• There will always be a minority partition and a majority partition
• Give up processing in the minority until partition heals and network resumes
• Majority can continue processing

35

Partition Tolerance

J. Bell GMU CS 475 Fall 2019

• Decisions made by majority
• Typically a fixed coordinator (leader) during a time period (epoch)
• How does the leader change?

• Assume it starts out as an arbitrary node
• The leader sends a heartbeat
• If you haven’t heard from the leader, then you challenge it by advancing to the

next epoch and try to elect a new one
• If you don’t get a majority of votes, you don’t get to be leader
• …hence no leader in a minority partition

36

Partition Tolerant Consensus Algorithms

Partition Tolerant
Consensus Algorithms

J. Bell GMU CS 475 Fall 2019

• One (or more) nodes decide to be leader (proposer)
• Leader proposes a value, solicits acceptance from the rest of the nodes
• Leader announces chosen value, or tries again if it failed to get all nodes to agree

on that value
• Lots of tricky corners (failure handling)
• In sum: requires only a majority of the (non-leader) nodes to accept a proposal

for it to succeed

38

Paxos: High Level

J. Bell GMU CS 475 Fall 2019 39

Paxos: Implementation Details

Just kidding!

J. Bell GMU CS 475 Fall 2019

• Distributed coordination service from Yahoo! originally, now maintained as
Apache project, used widely (key component of Hadoop etc)

• Highly available, fault tolerant, performant
• Designed so that YOU don’t have to implement Paxos for:

• Distributed transactions/agreement/consensus
• We’ll come back to ZooKeeper in a few weeks

40

ZooKeeper

J. Bell GMU CS 475 Fall 2019

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes

were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

41

This work is licensed under a Creative Commons Attribution-
ShareAlike license

http://creativecommons.org/licenses/by-sa/4.0/

