
GFS + MapReduce
CS 475, Fall 2019

Concurrent & Distributed Systems

J. Bell GMU CS 475 Fall 2019

NFS Caching - Close-to-open

2

Client 1
cache

Server
File 1: “a”

Client 2
cache

2. Read File: “a”

File 1: “a”

4. Write File: “b”

File 1: “b”File 1: “b”

1. Open File 3. Open File

7. Close File

Client 3
cache

9. Read File: “b”
8. Open File

Client 4
cache

6. Read File: “a”
5. Open File

File 1: “a”File 1: “b”

Note: in practice, client caches periodically check server to see if still valid

J. Bell GMU CS 475 Fall 2019

• Security: what if untrusted users can be root on client machines?
• Scalability: how many clients can share one server?

• Writes always go through to server
• Some writes are to “private,” unshared files that are deleted soon after

creation
• Can you run NFS on a large, complex network?

• Effects of latency? Packet loss? Bottlenecks?
• Important question: whose fault are these limitations? Are they intractable

(because of the very problem we are trying to solve)? Or are we just not
thinking hard enough?

NFS Limitations

3

J. Bell GMU CS 475 Fall 2019

• Today:
• Big data, big problems

• Additional readings for reference:
• GFS, MapReduce papers, Podcast about Dropbox

• Project is out next week!
• Fault-tolerant, sequentially consistent replicated key value store
• Start thinking of groups (1 to 3 students per group)

Today

4

https://research.google.com/archive/gfs-sosp2003.pdf
https://research.google.com/archive/mapreduce-osdi04.pdf
http://www.se-radio.net/2017/03/se-radio-episode-285-james-cowling-on-dropboxs-distributed-storage-system/

J. Bell GMU CS 475 Fall 2019

• I have a 1TB file
• I need to sort it
• …My computer can only read 60MB/sec
• …
• …
• …
• 1 day later, it’s done

More data, more problems

5

J. Bell GMU CS 475 Fall 2019

• Think about scale:
• Google indexes ~20 petabytes of web pages per day (as of 2008!)
• Facebook has 2.5 petabytes of user data, increases by 15 terabytes/day (as

of 2009!)

More data, more problems

6

J. Bell GMU CS 475 Fall 2019

Distributing Computation

7

J. Bell GMU CS 475 Fall 2019

• Can't I just add 100 nodes and sort my file 100 times faster?
• Not so easy:

• Sending data to/from nodes
• Coordinating among nodes
• Recovering when one node fails
• Optimizing for locality
• Debugging

Distributing Computation

8

J. Bell GMU CS 475 Fall 2019

• We begin to answer
• 1. How do we store the data?
• 2. How do we compute on this data?

Distributing Computation

9

J. Bell GMU CS 475 Fall 2019

NFS to the Rescue?

10

Server

Client Client Client Client Client

All files stored on the same server is bad because:
Fault tolerance (what if it crashes?)

Performance (what if we need to access 100’s of GBs at a time?)
Scale (what if we need to store PBs of files?)

Plus, NFS’ open-to-close caching can be weird

J. Bell GMU CS 475 Fall 2019

• Google apps observed to have specific R/W patterns (usually read recent
data, lots of data, etc)

• Normal FS API (POSIX) is constraining (consider: NFS contains a ton of
annoying glue to make it work with open/close/sync/seek etc)

• Hence, Google made their own FS

GFS (Google File System)

11

J. Bell GMU CS 475 Fall 2019

• Hundreds of thousands of regular servers
• Millions of regular disks
• Failures are normal

• App bugs, OS bugs
• Human Error
• Disk failure, memory failure, network failure, etc

• Huge number of concurrent reads, writes

GFS

12

J. Bell GMU CS 475 Fall 2019

• (Relatively) small total number of large files (>100MB) - millions
• Large, streaming reads (reading > 1MB at a time)

• Throughput is more important than latency
• Large, sequential writes that always append to end of a file

• Optimize for appends
• Multiple clients might append concurrently

GFS Workload

13

J. Bell GMU CS 475 Fall 2019

• Unified FS for all google platforms (e.g. gmail, youtube)
• Data + system availability
• Graceful + transparent failure handling
• Low synchronization overhead
• Exploit parallelism
• High throughput and low latency

GFS Design Goals

14

J. Bell GMU CS 475 Fall 2019

• Non-standard API (e.g. not POSIX system calls)
• Normal filesystem hierarchy (directories, paths)
• Extra operations:

• Snapshot (low cost file/directory tree copying)
• Record append (append without locking)

GFS Interface Design

15

J. Bell GMU CS 475 Fall 2019

• Servers:
• Single master
• Multiple backups (“chunk servers”)

• Base unit is a “Chunk”
• Fixed-part of a file (typically 64MB)
• Global ID: 64 bit unique ID, assigned by master upon creation
• Read/write: specify chunk ID + byte range into file
• Each chunk is replicated to at least 3 servers
• Chunks are stored as plain files on chunk servers

GFS Architecture

16

J. Bell GMU CS 475 Fall 2019

GFS Architecture

17

J. Bell GMU CS 475 Fall 2019

• Single master server (can replicate to a backup too)
• Holds all metadata (in RAM!) - namespace, ACL, file-chunk mapping

• In charge of migrating chunks, GC’ing chunks
• Data stored in 64MB chunks each with some ID

• Compare to EXT-4’s 4KB block
• Thousands of chunk servers

• Chunks are replicated
• Chunk servers don’t cache anything in RAM, store chunks as regular files

GFS Architecture

18

J. Bell GMU CS 475 Fall 2019

GFS Architecture

19

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

GFS Master

J. Bell GMU CS 475 Fall 2019

• Master server is in charge of metadata
• File-chunk mapping

• Stored on disk
• For each chunk:

• Location of replicas holding the chunk
• Identity of the master chunk server for this chunk
• Stored ONLY in RAM - if crash, recover by asking all chunk servers

GFS Metadata

20

J. Bell GMU CS 475 Fall 2019

GFS Metadata Example

21

Chunk ID Filename Part of file Master
Chunk Server

Other Chunk
Servers

1 /foo/bar 1 of 1 A, valid for 1
more minute B, C

2 /another/file 1 of 2 B, valid for 1
more minute A, C

3 /another/file 2 of 2 D, valid for 1
more minute C, E

Note - can get very good parallelism by splitting chunks of the same file across different chunk servers

J. Bell GMU CS 475 Fall 2019

• File-chunk mapping stored on disk
• Chunk-chunk server mapping stored only in RAM: why?

• If stored on disk, would need to update every time a chunk server comes/
leaves, OR new chunk comes (remember: optimize for appends)

• If stored on disk, would need to ensure that each update is flushed to disk
to ensure consistency if master fails (and RAM is lost)

• Hence: only store in RAM, recover from other chunk servers

GFS Metadata

22

J. Bell GMU CS 475 Fall 2019

• Makes metadata requests to master server
• Makes chunk requests to chunk servers
• Caches metadata
• Does not cache data (chunks)

• Google’s workload (streaming reads, appending writes) doesn’t benefit from
caching, so why bother with consistency nightmare

GFS Client

23

J. Bell GMU CS 475 Fall 2019

• There needs to be exactly one primary for each chunk
• GFS ensures this using leases

• Master selects a chunk server and grants it a lease
• The chunk server holds the lease for T seconds, and is primary
• Chunk server can refresh lease endlessly
• If chunk server fails to refresh it, falls out of being primary

• Like a lock, but needs to be renewed (like with a heart beat)

GFS Chunk Primaries

24

J. Bell GMU CS 475 Fall 2019

• Client asks master for chunk ID, chunk version number, and location of
replicas given a file name

• By default, GFS replicates each chunk to 3 servers
• Client sends read request to closest (in network topology) chunk server

GFS Reads

25

J. Bell GMU CS 475 Fall 2019

GFS - Reads

26

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

GFS MasterClient

Where is file f?

List of chunks and their locations

Reads chunks

J. Bell GMU CS 475 Fall 2019

• Client asks master for replicas storing a chunk (one is arbitrarily declared
primary)

• Client sends write request to all replicas
• Each replica acknowledges write to primary replica
• Primary coordinates commit between all of the replicas
• On success, primary replies to client

GFS Writes

27

J. Bell GMU CS 475 Fall 2019

• Metadata changes are atomic. Occur only on a single machine, so no
distributed issues.

• Changes to data are ordered as arbitrarily chosen by the primary chunk
server for a chunk

GFS Consistency

28

J. Bell GMU CS 475 Fall 2019

• Fault tolerance (what if it crashes?)
• NFS: Crashing the server is bad
• GFS: Crashing a chunk server is fine, crashing the primary is bad

• Performance (what if we need to access 100’s of GBs at a time?)
• NFS: Limited by single server’s bandwidth
• GFS: Limited only by number of chunk servers (can get good parallelism between

100 chunk servers each at 1GB/sec)
• Scale (what if we need to store PBs of files?)

• NFS: Limited by storage of single server
• GFS: Limited by amount of metadata that can be stored on single master

• Plus, NFS’ open-to-close caching can be weird
• GFS: No caching

Comparing GFS/NFS Issues

29

J. Bell GMU CS 475 Fall 2019

• Much more attractive than NFS for reading/writing large files
• Limitations:

• Master is a huge bottleneck
• Recovery of master is slow

• Lots of success at Google
• Performance isn't great for all apps (lots of small files?)
• Consistency needs to be managed by apps
• Replaced in 2010 by Google's Colossus system - eliminates master

GFS Summary

30

J. Bell GMU CS 475 Fall 2019

• Lots of these challenges re-appear, regardless of our specific problem
• How to split up the task
• How to put the results back together
• How to store the data (GFS)

• Enter, MapReduce

Distributing Computation

31

J. Bell GMU CS 475 Fall 2019

• A programming model for large-scale computations
• Takes large inputs, produces output
• No side-effects or persistent state other than that input and output

• Runtime library
• Automatic parallelization
• Load balancing
• Locality optimization
• Fault tolerance

MapReduce

32

J. Bell GMU CS 475 Fall 2019

• Partition data into splits (map)
• Aggregate, summarize, filter or transform that data (reduce)
• Programmer provides these two methods

MapReduce

33

J. Bell GMU CS 475 Fall 2019

MapReduce: Divide & Conquer

34

Combine

Result

r1 r2 r3 r4 r5

worker worker worker worker worker

w1 w2 w3 w4 w5

Partition

Big Data (lots of work)

J. Bell GMU CS 475 Fall 2019

• Calculate word frequencies in documents
• Input: files, one document per record
• Map parses documents into words

• Key - Word
• Value - Frequency of word

• Reduce: compute sum for each key

MapReduce: Example

35

J. Bell GMU CS 475 Fall 2019

MapReduce: Example

36

Input 1:
apple orange mango
 orange grapes plum

Input 2:
apple plum mango
 apple apple plum

apple orange mango

 orange grapes plum

 apple apple plum

apple plum mango

apple, 1
orange, 1
mango, 1

orange, 1
grapes, 1
plum, 1

apple, 1
plum, 1

mango, 1

apple, 1
apple, 1
plum, 1

Each line goes to a
mapper

Map splits key->value

to reduce

J. Bell GMU CS 475 Fall 2019

MapReduce: Example

37

apple, 1
orange, 1
mango, 1

orange, 1
grapes, 1
plum, 1

apple, 1
plum, 1

mango, 1

apple, 1
apple, 1
plum, 1

From Map apple, 1
apple, 1
apple, 2

grape, 1

mango, 1
mango, 1

orange, 1
orange, 1

plum, 1
plum, 1
plum, 1

Sort, shuffle

apple, 4

grape, 1

mango, 2

orange, 2

plum, 3

Reduce

apple, 4
grape, 1
mango, 2
orange, 2
plum, 3

Final Output

J. Bell GMU CS 475 Fall 2019

• Distributed grep
• Distributed clustering
• Web link graph traversal
• Detecting duplicate web pages

MapReduce Applications

38

J. Bell GMU CS 475 Fall 2019

• Each worker node is also a GFS chunk server!

MapReduce: Implementation

39

J. Bell GMU CS 475 Fall 2019

• One master, many workers
• Input data split into M map tasks (typically 64MB ea)
• R reduce tasks
• Tasks assigned to works dynamically; stateless and idempotent -> easy fault

tolerance for workers
• Typical numbers:

• 200,000 map tasks, 4,000 reduce tasks across 2,000 workers

MapReduce: Scheduling

40

J. Bell GMU CS 475 Fall 2019

• Master assigns map task to a free worker
• Prefer "close-by" workers for each task (based on data locality)
• Worker reads task input, produces intermediate output, stores locally (K/V

pairs)
• Master assigns reduce task to a free worker

• Reads intermediate K/V pairs from map workers
• Reduce worker sorts and applies some reduce operation to get the output

MapReduce: Scheduling

41

J. Bell GMU CS 475 Fall 2019

• Ideally, fine granularity tasks (more tasks than machines)
• On worker-failure:

• Re-execute completed and in-progress map tasks
• Re-executes in-progress reduce tasks
• Commit completion to master

• On master-failure:
• Recover state (master checkpoints in a primary-backup mechanism)

Fault tolerance via re-execution

42

J. Bell GMU CS 475 Fall 2019

• Originally presented by Google in 2003
• Widely used today (Hadoop is an open source implementation)
• Many systems designed to have easier programming models that compile

into MapReduce code (Pig, Hive)

MapReduce in Practice

43

J. Bell GMU CS 475 Fall 2019

Hadoop: HDFS

44

HDFS
HDFS NameNode

HDFS DataNode HDFS DataNode

J. Bell GMU CS 475 Fall 2019

• Files are split into blocks (128MB)
• Each block is replicated (default 3 block servers)
• If a host crashes, all blocks are re-replicated somewhere else
• If a host is added, blocks are rebalanced
• Can get awesome locality by pushing the map tasks to the nodes with the

blocks (just like MapReduce)

HDFS (GFS Review)

45

J. Bell GMU CS 475 Fall 2019

Hadoop

46

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

DataNode DataNodeDataNode DataNode DataNodeDataNode

NameNode NameNode

Primary Secondary

J. Bell GMU CS 475 Fall 2019

Hadoop Ecosystem

47

J. Bell GMU CS 475 Fall 2019

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

This work is licensed under a Creative Commons Attribution-
ShareAlike license

48

http://creativecommons.org/licenses/by-sa/4.0/

