
Sharding & CDNs
CS 475, Fall 2019

Concurrent & Distributed Systems

J. Bell GMU CS 475 Fall 2019

Review: GFS Architecture

2

J. Bell GMU CS 475 Fall 2019

Review: GFS - Reads

3

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer ChunkServer ChunkServerChunkServer

GFS MasterClient

Where is file f?

List of chunks and their locations

Reads chunks

J. Bell GMU CS 475 Fall 2019

• How do we get rid of the “master” server that keeps track of metadata?
• Sharding & CDNs

• Reminder - Project is out next week!
• Fault-tolerant, sequentially consistent replicated key value store
• Can do in a group (1 to 3 students per group)

Today

4

J. Bell GMU CS 475 Fall 2019

• How do we find data?
• Every answer so far has required some sort of central server

• DNS lets us resolve names, going through the root servers
• GFS lets us find chunks that match to files, but need to go through master

server
• Why not use the central server to find data?

Locating Data

5

J. Bell GMU CS 475 Fall 2019

• Central server is:
• Point of failure
• Performance bottleneck
• Requires bootstrapping

Why not use a central server to find data?

6

ChunkServer ChunkServerChunkServer

ChunkServer ChunkServerChunkServer

GFS Master

J. Bell GMU CS 475 Fall 2019

• Goal: replicate web content to many servers
• Reduces server load
• Reduces latency

Motivating Problem: CDN

7

Origin server CDN Gateway

CDN server (Europe)

CDN server (Asia)

CDN server (N America)

J. Bell GMU CS 475 Fall 2019

• Motivating scenario:
• Prof Bell has a popular web page, doesn’t want to be limited by his server’s

capacity or location
• What is the high level problem?

• We will scatter caches across the internet, direct browser to nearest cached
copy

• If not cached nearby, fetch and store in cache
• Why does this help?

• Reduces server load
• Reduces latency

CDNs

8

J. Bell GMU CS 475 Fall 2019

• Many small objects per page, but “long tail” of file size
• Pages have embedded references to content
• Implications?

• Lots of requests! -> potential for latency issues
• Some big requests -> potential for throughput issues

Typical Web Workload

9

J. Bell GMU CS 475 Fall 2019

• Constraints:
• No support from browser
• No support from the server we are caching
• Different pages will have different popularities

• What can we do?
• We can change DNS lookups and see the HTTP requests from the clients

CDNs

10

Client CDN
Server

Client Server

J. Bell GMU CS 475 Fall 2019

CDN Idea

11

Origin server CDN Gateway

CDN server (Europe)

CDN server (Asia)

CDN server (N America)

User

J. Bell GMU CS 475 Fall 2019

• How do we replicate the content?
• Assume: only static content

• Where do we replicate the content?
• Assume: infinite money

• How to choose amongst known replicas?
• Lowest load? Best performance?

• How to find the replicated content?
• Tricky

CDN Challenges

12

J. Bell GMU CS 475 Fall 2019

Where to Replicate

13

CDN PoP

CDN PoP

Deploy “Point-of-
Presence” physically/

logically near ISPs
Reduce hops between users and CDN

CDN PoP

J. Bell GMU CS 475 Fall 2019

How to Replicate

14

CDN PoP

Rack(s) of servers with lots of RAM
Directly connected to internet backbone

(hundreds of Gbps)

J. Bell GMU CS 475 Fall 2019

• Which point-of-presence to pick?
• Based on geography? Round trip time?
• Throughput of each PoP? Load?

• How to do the redirection?
• As part of the application? (redirect requests)
• As part of naming? (DNS alias record)

How to find PoP

15

CDN PoP

CDN PoP CDN PoP

J. Bell GMU CS 475 Fall 2019

• Client does normal DNS lookup
• DNS is setup to map to regionally best PoP

• How? Return a Name Server record for the correct PoP
• Large (hours) time-to-live on this record (want lots of caching)

• Regional PoP DNS server resolves to a specific server within that PoP
• Want server most likely to have the page cached already
• Very small (<5 minutes) TTL

How to find PoP

16

J. Bell GMU CS 475 Fall 2019

How to Find PoP

17

Local DNS Server

ns1.cloudflare.net

www.jonbell.net

www.jonbell.net

104.24.122.171

104.24.122.171

104.24.122.171
www.jonbell.net aka:

www.jonbell.net.cdn.cloudflare.net

http://www.jonbell.net
http://www.jonbell.net.cdn.cloudflare.net

J. Bell GMU CS 475 Fall 2019

• Desire super, super low latency
• Serving a single request is probably very very cheap (e.g. read a 1KB file

from memory/SSD and return it)
• But we want to serve billions of these requests at once
• VERY important that we can route requests fast

How to find content inside of PoP?

18

J. Bell GMU CS 475 Fall 2019

CDN: How to find content?

19

Problem: how the heck do we figure out what data should go where?

J. Bell GMU CS 475 Fall 2019

CDN: How to find content? (Strawman)

20

Master server rotates requests between
cache servers (“round robin”)

Big cluster of cache servers

Problem: No specialization - each cache server at worst case caches entire internet!

J. Bell GMU CS 475 Fall 2019

CDN: How to find content? (Strawman)

21

Master server directs all requests to
appropriate cache server

Big cluster of cache servers

Problem: Master becomes a huge bottleneck
Millions of requests, each request needs to be processed incredibly fast

J. Bell GMU CS 475 Fall 2019

CDN: How to find content? (Strawman)

22

Problem: How do we organize the tiers/shortcut from URLs to servers?
1 server per domain doesn’t help balance load

apple.com jonbell.net

J. Bell GMU CS 475 Fall 2019

Strawman: Sharding (Partitioning by Key)

23

Students [A…
N]

Students [A…
N]

Students [A…
N]

Students [O…
Z]

Students [O…
Z]

Students [O…
Z]

J. Bell GMU CS 475 Fall 2019

• We can solve our discovery problem if we can define a consistent way to
store our data and share those rules

• Create "buckets," and use a "hash function" to map from a key to a bucket
• Example: All files starting with the letter "A" are stored on servers 1,2,3; all

files starting with the letter "B" are stored on severs 4,5,6, etc.

Strawman: Sharding (Partitioning by Key)

24

J. Bell GMU CS 475 Fall 2019

Strawman Sharding Scheme

25

Students
[A…N]

Students
[A…N]

Students
[A…N]

Students
[O…Z]

Students
[O…Z]

Students
[O…Z]

In this class:

38 students

28 students

J. Bell GMU CS 475 Fall 2019

• BitTorrent & many other modern p2p systems use content-based naming
• Content distribution networks such as Akamai use hashing to place content

on servers
• Amazon, Linkedin, etc., all have built very large-scale key-value storage

systems (databases--) using hashing

Hashing

26

J. Bell GMU CS 475 Fall 2019

• Idea: create a function hash(key), that for any key returns the server that
stores key

• This is called a hash function
• Problems?

• No notion of duplication (what if a server goes down?)
• What if nodes go down/come up?

Hashing

27

J. Bell GMU CS 475 Fall 2019

• Input: Some arbitrarily large data (bytes, ints, letters, whatever)
• Output: A fixed size value
• Rule: Same input gives same output, always; "unlikely" to have multiple inputs

map to the same output

Hashing

28

J. Bell GMU CS 475 Fall 2019

• Compresses data: maps a variable-length input to a fixed-length output
• Relatively easy to compute
• Example:

Hashing

29

Leo McGarry
Josh Lyman

Sam Seaborn

Toby Ziegler

Inputs

Hash
Function

0
1
2
3
4
5
6
7

Hash

J. Bell GMU CS 475 Fall 2019

• The last one mapped every input to a different hash
• Doesn't have to, could be collisions

Hashing

30

Leo McGarry
Josh Lyman

Sam Seaborn

Toby Ziegler

Inputs

Hash
Function

0
1
2
3
4
5
6
7

Hash

J. Bell GMU CS 475 Fall 2019

• Hashes have tons of other uses too:
• Verifying integrity of data
• Hash table
• Cryptography
• Merkle trees (git, blockchain)

Hashing

31

J. Bell GMU CS 475 Fall 2019

Hashing for Partitioning

32

Input

Some big long
piece of text or
database key

Hash Result

900405hash()= % 20 =

Server ID

5

J. Bell GMU CS 475 Fall 2019

CDN: Finding Content

33

1 2

7 8

3 4

9 10

5 6

11 12

https://www.jonbell.net/gmu-cs-475-fall-2019/hash()=8

Master server takes hash of entire URL

J. Bell GMU CS 475 Fall 2019

• Problems:
• No data duplication (what if crash?)
• Who keeps track of which servers are up/down?
• Adding/removing servers is very hard

Hash-Partitioning

34

https://www.jonbell.net/gmu-cs-475-fall-2019/hash()=8

Master server takes hash of entire URL

Input

Some big long
piece of text or
database key

Hash Result

900405hash()= % 20 =

Server ID

5

What happens if we change to 21?

J. Bell GMU CS 475 Fall 2019

• In practice, might use an off-the-shelf hash function, like sha1
• sha1(url) -> 160 bit hash result % 20 -> server ID (assuming 20 servers)
• But what happens when we add or remove a server?

• Data is stored on what was the right server, but now that the number of
servers changed, the right server changed too!

Conventional Hashing + Sharding

35

J. Bell GMU CS 475 Fall 2019

Conventional Hashing

36

Assume we have 10 keys, all integers

server 0 server 1 server 2 server 3

Adding a new server

0, 3, 6, 9 1, 4, 7 2, 5, 8

J. Bell GMU CS 475 Fall 2019

Conventional Hashing

37

Assume we have 10 keys, all integers

server 0 server 1 server 2 server 3

0, 4, 8 1, 5, 9 2, 6 3, 7

Adding a new server

8/10 keys had to be reshuffled!
Expensive!

J. Bell GMU CS 475 Fall 2019

• Problem with regular hashing: very sensitive to changes in the number of
servers holding the data!

• Consistent hashing will require on average that only K/n keys need to be
remapped for K keys with n different slots (in our case, that would have been
10/4 = 2.5 [compare to 8])

Consistent Hashing

38

J. Bell GMU CS 475 Fall 2019

• Construction:
• Assign each of C hash buckets to random points on mod 2n circle, where

hash key size = n
• Map object to pseudo-random position on circle
• Hash of object is the closest clockwise bucket

Consistent Hashing

39

0

4

8

12

Example: hash key size is 16

Each is a value of hash % 16

Each is a bucket

Example: bucket with key 9?

9

J. Bell GMU CS 475 Fall 2019

It is relatively smooth: adding a new bucket doesn't change that much

Consistent Hashing

40

0

4

8

12

Add new bucket: only
changes location of keys

7,8,9,10

Delete bucket: only
changes location of keys

1,2,3

J. Bell GMU CS 475 Fall 2019

CDN: Finding Content

41

1 2

7 8

3 4

9 10

5 6

11 12

https://www.jonbell.net/gmu-cs-475-fall-2019/consistenthash()=8

Master server takes hash of entire URL

J. Bell GMU CS 475 Fall 2019

• Client does normal DNS lookup
• DNS is setup to map to regionally best PoP

• How? Return a Name Server record for the correct PoP
• Large (hours) time-to-live on this record (want lots of caching)

• Regional PoP DNS server resolves to a specific server within that PoP
• Want server most likely to have the page cached already
• Very small (<5 minutes) TTL
• Uses consistent hashing to choose the local server for the URL

Finding the replicas with DNS

42

J. Bell GMU CS 475 Fall 2019

• Remember, goal: make it look like the origin server is just really fast, but:
• We have lots of servers caching that data
• How do we keep them all up-to-date, or at least consistent?
• Saving grace: data can only be written in one place

• Tradeoffs:
• Complexity of implementation
• Scalability
• Consistency

Cache Consistency

43

Origin server CDN Gateway

CDN server (Europe)

CDN server (Asia)

CDN server (N America)

J. Bell GMU CS 475 Fall 2019

• Every time any data is updated, each potential caching site is notified
• Doesn’t matter if site has data cached or not
• Clears out caches, does not put new object in there though

• Pros:
• Simple to implement

• Cons:
• Wasted traffic (if data not cached already)
• Hard to scale if require invalidates to be acknowledged before allowing

write

Cache Consistency Approach: Broadcast Invalidations

44

J. Bell GMU CS 475 Fall 2019

• Reader checks the origin copy before each use
• Fetch only if the cache is stale
• Has to be done at level of entire file, for each read

• Pros:
• Simple to implement
• No state needed

• Cons:
• Wasted traffic if not updated
• Defeats the performance goals (throughput? latency?)

Cache Consistency Approach: Check on Use

45

J. Bell GMU CS 475 Fall 2019

• Assume that cached data will be valid for some amount of time
• Each page has a TTL (time-to-live)
• No communication during the TTL period, then communicate to re-establish
• Pros:

• Simple to implement, no server state
• Cons:

• May allow for divergence in consistency

Cache Consistency Approach: TTLs

46

J. Bell GMU CS 475 Fall 2019

• Static content
• Images, photos, static sites, CSS files, JS files, etc.
• Consistency set by TTL, set by the owner of the content

• Dynamic content
• Pages that update, e.g. blog
• Broadcast invalidation to “purge” objects

• Edge-based applications
• The entire application runs in the CDN using consistent replication (future)

CDN Update Propagation

47

J. Bell GMU CS 475 Fall 2019

• Caching is the only way to improve latency across the internet (can not beat
speed of light)

• CDNs move data closer to the user, balance load and failures
• Use consistent hashing
• Many design decisions for cache consistency

CDN Summary

48

J. Bell GMU CS 475 Fall 2019

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

This work is licensed under a Creative Commons Attribution-
ShareAlike license

49

http://creativecommons.org/licenses/by-sa/4.0/

